本文整理匯總了Python中tensorflow.python.ops.array_ops.pad方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.pad方法的具體用法?Python array_ops.pad怎麽用?Python array_ops.pad使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.pad方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _SliceGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def _SliceGrad(op, grad):
"""Gradient for Slice op."""
# Create an Nx2 padding where the first column represents how many
# zeros are to be prepended for each dimension, and the second
# column indicates how many zeros are appended.
#
# The number of zeros to append is the shape of the input
# elementwise-subtracted by both the begin vector and sizes vector.
#
# Some more reshaping is needed to assemble this tensor with the
# right dimensions.
input_vec = op.inputs[0]
begin_vec = op.inputs[1]
input_rank = array_ops.rank(input_vec)
slice_size = array_ops.shape(op.outputs[0])
shape = array_ops.stack([input_rank, 1])
before_pad = array_ops.reshape(begin_vec, shape)
after_pad = array_ops.reshape(
array_ops.shape(input_vec) - slice_size - begin_vec, shape)
paddings = array_ops.concat([before_pad, after_pad], 1)
return array_ops.pad(grad, paddings), None, None
示例2: _process_matrix
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def _process_matrix(self, matrix, min_rank, event_ndims):
"""Helper to __init__ which gets matrix in batch-ready form."""
# Pad the matrix so that matmul works in the case of a matrix and vector
# input. Keep track if the matrix was padded, to distinguish between a
# rank 3 tensor and a padded rank 2 tensor.
# TODO(srvasude): Remove side-effects from functions. Its currently unbroken
# but error-prone since the function call order may change in the future.
self._rank_two_event_ndims_one = math_ops.logical_and(
math_ops.equal(array_ops.rank(matrix), min_rank),
math_ops.equal(event_ndims, 1))
left = array_ops.where(self._rank_two_event_ndims_one, 1, 0)
pad = array_ops.concat(
[array_ops.ones(
[left], dtype=dtypes.int32), array_ops.shape(matrix)],
0)
return array_ops.reshape(matrix, pad)
示例3: _SliceGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def _SliceGrad(op, grad):
"""Gradient for Slice op."""
# Create an Nx2 padding where the first column represents how many
# zeros are to be prepended for each dimension, and the second
# column indicates how many zeros are appended.
#
# The number of zeros to append is the shape of the input
# elementwise-subtracted by both the begin vector and sizes vector.
#
# Some more reshaping is needed to assemble this tensor with the
# right dimensions.
input_vec = op.inputs[0]
begin_vec = op.inputs[1]
input_rank = array_ops.rank(input_vec)
slice_size = array_ops.shape(op.outputs[0])
shape = array_ops.pack([input_rank, 1])
before_pad = array_ops.reshape(begin_vec, shape)
after_pad = array_ops.reshape(
array_ops.shape(input_vec) - slice_size - begin_vec, shape)
paddings = array_ops.concat(1, [before_pad, after_pad])
return array_ops.pad(grad, paddings), None, None
示例4: _test_pad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def _test_pad(data, mode="CONSTANT", quantized=False):
""" One iteration of PAD """
assert len(data) == 2
# Test with tensor and constant
with tf.Graph().as_default():
in_data = [array_ops.placeholder(shape=data[0].shape, dtype='float32', name='in')]
if quantized:
# fake_quant will keep the tensors in float32 until the conversion in the session
input_range = {'inq_0': (-100, 100)}
inq_data = [tf.quantization.fake_quant_with_min_max_args(in_data[0],
min=-100,
max=100,
name="inq_0")]
out = array_ops.pad(inq_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode)
compare_tflite_with_tvm([data[0]], ['inq_0:0'], inq_data, [out], quantized=True,
input_range=input_range)
else:
out = array_ops.pad(in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode)
compare_tflite_with_tvm([data[0]], ['in:0'], in_data, [out])
示例5: resize_audio_with_crop_or_pad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def resize_audio_with_crop_or_pad(image, target_height, target_width,
dynamic_shape=False):
image = tf.convert_to_tensor(image, name='audio')
original_height, _ = _ImageDimensions(image, dynamic_shape=dynamic_shape)
if target_height <= 0:
raise ValueError('target_height must be > 0.')
if dynamic_shape:
max_ = math_ops.maximum
min_ = math_ops.minimum
else:
max_ = max
min_ = min
height_diff = target_height - original_height
offset_crop_height = max_(-height_diff // 2, 0)
offset_pad_height = max_(height_diff // 2, 0)
# Maybe crop if needed.
cropped = crop_to_1d_bounding_box(image, offset_crop_height,
min_(target_height, original_height),
dynamic_shape=dynamic_shape)
# Maybe pad if needed.
resized = pad_to_1d_bounding_box(cropped, offset_pad_height,
target_height,
dynamic_shape=dynamic_shape)
if resized.get_shape().ndims is None:
raise ValueError('resized contains no shape.')
if not resized.get_shape()[0].is_compatible_with(target_height):
raise ValueError('resized height is not correct.')
return resized
# In[5]:
示例6: temporal_padding
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def temporal_padding(x, padding=(1, 1)):
"""Pads the middle dimension of a 3D tensor.
Arguments:
x: Tensor or variable.
padding: Tuple of 2 integers, how many zeros to
add at the start and end of dim 1.
Returns:
A padded 3D tensor.
"""
assert len(padding) == 2
pattern = [[0, 0], [padding[0], padding[1]], [0, 0]]
return array_ops.pad(x, pattern)
示例7: spatial_2d_padding
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def spatial_2d_padding(x, padding=((1, 1), (1, 1)), data_format=None):
"""Pads the 2nd and 3rd dimensions of a 4D tensor.
Arguments:
x: Tensor or variable.
padding: Tuple of 2 tuples, padding pattern.
data_format: One of `channels_last` or `channels_first`.
Returns:
A padded 4D tensor.
Raises:
ValueError: if `data_format` is neither
`channels_last` or `channels_first`.
"""
assert len(padding) == 2
assert len(padding[0]) == 2
assert len(padding[1]) == 2
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
if data_format == 'channels_first':
pattern = [[0, 0], [0, 0], list(padding[0]), list(padding[1])]
else:
pattern = [[0, 0], list(padding[0]), list(padding[1]), [0, 0]]
return array_ops.pad(x, pattern)
示例8: spatial_3d_padding
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def spatial_3d_padding(x, padding=((1, 1), (1, 1), (1, 1)), data_format=None):
"""Pads 5D tensor with zeros along the depth, height, width dimensions.
Pads these dimensions with respectively
"padding[0]", "padding[1]" and "padding[2]" zeros left and right.
For 'channels_last' data_format,
the 2nd, 3rd and 4th dimension will be padded.
For 'channels_first' data_format,
the 3rd, 4th and 5th dimension will be padded.
Arguments:
x: Tensor or variable.
padding: Tuple of 3 tuples, padding pattern.
data_format: One of `channels_last` or `channels_first`.
Returns:
A padded 5D tensor.
Raises:
ValueError: if `data_format` is neither
`channels_last` or `channels_first`.
"""
assert len(padding) == 3
assert len(padding[0]) == 2
assert len(padding[1]) == 2
assert len(padding[2]) == 2
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
if data_format == 'channels_first':
pattern = [[0, 0], [0, 0], [padding[0][0], padding[0][1]],
[padding[1][0], padding[1][1]], [padding[2][0], padding[2][1]]]
else:
pattern = [[0, 0], [padding[0][0], padding[0][1]],
[padding[1][0], padding[1][1]], [padding[2][0],
padding[2][1]], [0, 0]]
return array_ops.pad(x, pattern)
示例9: _strict_1d_cumsum
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def _strict_1d_cumsum(tensor, len_tensor):
"""Cumsum of a 1D tensor with defined shape by padding and convolving."""
# Assumes tensor shape is fully defined.
with ops.name_scope('strict_1d_cumsum', values=[tensor]):
if len_tensor == 0:
return constant_op.constant([])
len_pad = len_tensor - 1
x = array_ops.pad(tensor, [[len_pad, 0]])
h = array_ops.ones_like(x)
return _strict_conv1d(x, h)[:len_tensor]
# TODO(langmore) Remove once a faster cumsum (accumulate_sum) Op is available.
# See: https://github.com/tensorflow/tensorflow/issues/813
示例10: _forward
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def _forward(self, x):
# Pad the last dim with a zeros vector. We need this because it lets us
# infer the scale in the inverse function.
y = array_ops.expand_dims(x, dim=-1) if self._static_event_ndims == 0 else x
ndims = (y.get_shape().ndims if y.get_shape().ndims is not None
else array_ops.rank(y))
y = array_ops.pad(y,
paddings=array_ops.concat(
(array_ops.zeros(
(ndims - 1, 2), dtype=dtypes.int32), [[0, 1]]),
0))
# Set shape hints.
if x.get_shape().ndims is not None:
shape = x.get_shape().as_list()
if self._static_event_ndims == 0:
shape += [2]
elif shape[-1] is not None:
shape[-1] += 1
shape = tensor_shape.TensorShape(shape)
y.get_shape().assert_is_compatible_with(shape)
y.set_shape(shape)
# Since we only support event_ndims in [0, 1] and we do padding, we always
# reduce over the last dimension, i.e., dim=-1 (which is the default).
return nn_ops.softmax(y)
示例11: testFuseResizePadAndConv
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def testFuseResizePadAndConv(self):
with self.test_session() as sess:
inputs = [1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6]
input_op = constant_op.constant(
np.array(inputs), shape=[1, 2, 3, 2], dtype=dtypes.float32)
resize_op = image_ops.resize_bilinear(
input_op, [12, 4], align_corners=False)
pad_op = array_ops.pad(resize_op, [[0, 0], [1, 1], [2, 2], [0, 0]],
mode="REFLECT")
weights = [1, 2, 3, 4, 0.1, 0.2, 0.3, 0.4]
weights_op = constant_op.constant(
np.array(weights), shape=[1, 2, 2, 2], dtype=dtypes.float32)
nn_ops.conv2d(
pad_op, weights_op, [1, 1, 1, 1], padding="VALID", name="output")
original_graph_def = sess.graph_def
original_result = sess.run(["output:0"])
optimized_graph_def = optimize_for_inference_lib.fuse_resize_and_conv(
original_graph_def, ["output"])
with self.test_session() as sess:
_ = importer.import_graph_def(
optimized_graph_def, input_map={}, name="optimized")
optimized_result = sess.run(["optimized/output:0"])
self.assertAllClose(original_result, optimized_result)
for node in optimized_graph_def.node:
self.assertNotEqual("Conv2D", node.op)
self.assertNotEqual("MirrorPad", node.op)
self.assertNotEqual("ResizeBilinear", node.op)
示例12: testFusePadAndConv
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def testFusePadAndConv(self):
with self.test_session() as sess:
inputs = [1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6]
input_op = constant_op.constant(
np.array(inputs), shape=[1, 2, 3, 2], dtype=dtypes.float32)
pad_op = array_ops.pad(input_op, [[0, 0], [1, 1], [2, 2], [0, 0]],
mode="REFLECT")
weights = [1, 2, 3, 4, 0.1, 0.2, 0.3, 0.4]
weights_op = constant_op.constant(
np.array(weights), shape=[1, 2, 2, 2], dtype=dtypes.float32)
nn_ops.conv2d(
pad_op, weights_op, [1, 1, 1, 1], padding="VALID", name="output")
original_graph_def = sess.graph_def
original_result = sess.run(["output:0"])
optimized_graph_def = optimize_for_inference_lib.fuse_resize_and_conv(
original_graph_def, ["output"])
with self.test_session() as sess:
_ = importer.import_graph_def(
optimized_graph_def, input_map={}, name="optimized")
optimized_result = sess.run(["optimized/output:0"])
self.assertAllClose(original_result, optimized_result)
for node in optimized_graph_def.node:
self.assertNotEqual("Conv2D", node.op)
self.assertNotEqual("MirrorPad", node.op)
示例13: _infer_batch_ndims
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def _infer_batch_ndims(self):
"""Return batch_ndims."""
if self._is_only_identity_multiplier:
return 0
# The real batch dims is one less when we pad in the case of event_ndims =
# 1, and the rank of the underlying scale being 2. This allows us to have
# non-negative sample dims.
return (self._scale.rank() - 2 -
array_ops.where(self._rank_two_event_ndims_one, 1, 0))
示例14: _forward_log_det_jacobian
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def _forward_log_det_jacobian(self, x):
if self._is_only_identity_multiplier:
# TODO(jvdillon): We don't pad in this case and instead let the fldj be
# applied via broadcast.
d = math_ops.cast(array_ops.shape(x)[-1], dtype=self._scale.dtype)
return math_ops.log(math_ops.abs(self._scale)) * array_ops.where(
math_ops.equal(self.shaper.event_ndims, 0), 1., d)
fldj = self._scale.sqrt_log_abs_det()
# We need to squeeze off the padded dimension.
start = array_ops.where(self._rank_two_event_ndims_one, 1, 0)
return array_ops.reshape(fldj, array_ops.shape(fldj)[start:])
示例15: test
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pad [as 別名]
def test(self):
pad_lt = ops.pad(self.original_lt,
{'x': (1, 1),
'channel': ([], ['alpha'])})
golden_op = array_ops.pad(self.original_lt.tensor, [[1, 1], [0, 1], [0, 0],
[0, 0]])
golden_axes = [('x', self.x_size + 2),
('channel', ['red', 'green', 'blue', 'alpha']), self.a2,
self.a3]
golden_lt = core.LabeledTensor(golden_op, golden_axes)
self.assertLabeledTensorsEqual(pad_lt, golden_lt)