本文整理匯總了Python中tensorflow.python.ops.array_ops.pack方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.pack方法的具體用法?Python array_ops.pack怎麽用?Python array_ops.pack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.pack方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testBatch
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def testBatch(self):
# Build an arbitrary RGB image
np.random.seed(7)
batch_size = 5
shape = (batch_size, 2, 7, 3)
for nptype in [np.float32, np.float64]:
inp = np.random.rand(*shape).astype(nptype)
# Convert to HSV and back, as a batch and individually
with self.test_session(use_gpu=True) as sess:
batch0 = constant_op.constant(inp)
batch1 = image_ops.rgb_to_hsv(batch0)
batch2 = image_ops.hsv_to_rgb(batch1)
split0 = array_ops.unpack(batch0)
split1 = list(map(image_ops.rgb_to_hsv, split0))
split2 = list(map(image_ops.hsv_to_rgb, split1))
join1 = array_ops.pack(split1)
join2 = array_ops.pack(split2)
batch1, batch2, join1, join2 = sess.run([batch1, batch2, join1, join2])
# Verify that processing batch elements together is the same as separate
self.assertAllClose(batch1, join1)
self.assertAllClose(batch2, join2)
self.assertAllClose(batch2, inp)
示例2: _SliceGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def _SliceGrad(op, grad):
"""Gradient for Slice op."""
# Create an Nx2 padding where the first column represents how many
# zeros are to be prepended for each dimension, and the second
# column indicates how many zeros are appended.
#
# The number of zeros to append is the shape of the input
# elementwise-subtracted by both the begin vector and sizes vector.
#
# Some more reshaping is needed to assemble this tensor with the
# right dimensions.
input_vec = op.inputs[0]
begin_vec = op.inputs[1]
input_rank = array_ops.rank(input_vec)
slice_size = array_ops.shape(op.outputs[0])
shape = array_ops.pack([input_rank, 1])
before_pad = array_ops.reshape(begin_vec, shape)
after_pad = array_ops.reshape(
array_ops.shape(input_vec) - slice_size - begin_vec, shape)
paddings = array_ops.concat(1, [before_pad, after_pad])
return array_ops.pad(grad, paddings), None, None
示例3: _TileGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def _TileGrad(op, grad):
"""Sum reduces grad along the tiled dimensions."""
assert isinstance(grad, ops.Tensor)
input_shape = array_ops.shape(op.inputs[0])
# We interleave multiples and input_shape to get split_shape,
# reshape grad to split_shape, and reduce along all even
# dimensions (the tiled dimensions) to get the result
# with shape input_shape. For example
# input_shape = [20, 30, 40]
# multiples = [2, 3, 4]
# split_shape = [2, 20, 3, 30, 4, 40]
# axes = [0, 2, 4]
split_shape = array_ops.reshape(array_ops.transpose(
array_ops.pack([op.inputs[1], input_shape])), [-1])
axes = math_ops.range(0, array_ops.size(split_shape), 2)
input_grad = math_ops.reduce_sum(array_ops.reshape(grad, split_shape), axes)
# Fix shape inference
input_grad.set_shape(op.inputs[0].get_shape())
return [input_grad, None]
示例4: random_flip_up_down
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def random_flip_up_down(image, seed=None):
"""Randomly flips an image vertically (upside down).
With a 1 in 2 chance, outputs the contents of `image` flipped along the first
dimension, which is `height`. Otherwise output the image as-is.
Args:
image: A 3-D tensor of shape `[height, width, channels].`
seed: A Python integer. Used to create a random seed. See
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
for behavior.
Returns:
A 3-D tensor of the same type and shape as `image`.
Raises:
ValueError: if the shape of `image` not supported.
"""
image = ops.convert_to_tensor(image, name='image')
_Check3DImage(image, require_static=False)
uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
mirror = math_ops.less(array_ops.pack([uniform_random, 1.0, 1.0]), 0.5)
return array_ops.reverse(image, mirror)
示例5: random_flip_left_right
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def random_flip_left_right(image, seed=None):
"""Randomly flip an image horizontally (left to right).
With a 1 in 2 chance, outputs the contents of `image` flipped along the
second dimension, which is `width`. Otherwise output the image as-is.
Args:
image: A 3-D tensor of shape `[height, width, channels].`
seed: A Python integer. Used to create a random seed. See
[`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
for behavior.
Returns:
A 3-D tensor of the same type and shape as `image`.
Raises:
ValueError: if the shape of `image` not supported.
"""
image = ops.convert_to_tensor(image, name='image')
_Check3DImage(image, require_static=False)
uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
mirror = math_ops.less(array_ops.pack([1.0, uniform_random, 1.0]), 0.5)
return array_ops.reverse(image, mirror)
示例6: tensors_to_item
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def tensors_to_item(self, keys_to_tensors):
tensor = keys_to_tensors[self._tensor_key]
shape = self._shape
if self._shape_keys:
shape_dims = []
for k in self._shape_keys:
shape_dim = keys_to_tensors[k]
if isinstance(shape_dim, sparse_tensor.SparseTensor):
shape_dim = sparse_ops.sparse_tensor_to_dense(shape_dim)
shape_dims.append(shape_dim)
shape = array_ops.reshape(array_ops.pack(shape_dims), [-1])
if isinstance(tensor, sparse_tensor.SparseTensor):
if shape is not None:
tensor = sparse_ops.sparse_reshape(tensor, shape)
tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
else:
if shape is not None:
tensor = array_ops.reshape(tensor, shape)
return tensor
示例7: _sample_n
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def _sample_n(self, n, seed=None):
# Recall _assert_valid_mu ensures mu and self._cov have same batch shape.
shape = array_ops.concat(0, [self._cov.vector_shape(), [n]])
white_samples = random_ops.random_normal(shape=shape,
mean=0.,
stddev=1.,
dtype=self.dtype,
seed=seed)
correlated_samples = self._cov.sqrt_matmul(white_samples)
# Move the last dimension to the front
perm = array_ops.concat(0, (
array_ops.pack([array_ops.rank(correlated_samples) - 1]),
math_ops.range(0, array_ops.rank(correlated_samples) - 1)))
# TODO(ebrevdo): Once we get a proper tensor contraction op,
# perform the inner product using that instead of batch_matmul
# and this slow transpose can go away!
correlated_samples = array_ops.transpose(correlated_samples, perm)
samples = correlated_samples + self.mu
return samples
示例8: _reverse_seq
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def _reverse_seq(input_seq, lengths):
"""Reverse a list of Tensors up to specified lengths.
Args:
input_seq: Sequence of seq_len tensors of dimension (batch_size, depth)
lengths: A tensor of dimension batch_size, containing lengths for each
sequence in the batch. If "None" is specified, simply reverses
the list.
Returns:
time-reversed sequence
"""
for input_ in input_seq:
input_.set_shape(input_.get_shape().with_rank(2))
# Join into (time, batch_size, depth)
s_joined = array_ops_.pack(input_seq)
# Reverse along dimension 0
s_reversed = array_ops_.reverse_sequence(s_joined, lengths, 0, 1)
# Split again into list
result = array_ops_.unpack(s_reversed)
return result
示例9: zero_fast_weights
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def zero_fast_weights(self, batch_size, dtype):
"""Return zero-filled fast_weights tensor(s).
Args:
batch_size: int, float, or unit Tensor representing the batch size.
dtype: the data type to use for the state.
Returns:
A zero filled fast_weights of shape [batch_size, state_size, state_size]
"""
state_size = self.state_size
zeros = array_ops.zeros(
array_ops.pack([batch_size, state_size, state_size]), dtype=dtype)
zeros.set_shape([None, state_size, state_size])
return zeros
示例10: inference_graph
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def inference_graph(self, input_data, data_spec=None):
"""Constructs a TF graph for evaluating a random forest.
Args:
input_data: A tensor or SparseTensor or placeholder for input data.
data_spec: A list of tf.dtype values specifying the original types of
each column.
Returns:
The last op in the random forest inference graph.
"""
data_spec = [constants.DATA_FLOAT] if data_spec is None else data_spec
probabilities = []
for i in range(self.params.num_trees):
with ops.device(self.device_assigner.get_device(i)):
tree_data = input_data
if self.params.bagged_features:
tree_data = self._bag_features(i, input_data)
probabilities.append(self.trees[i].inference_graph(tree_data,
data_spec))
with ops.device(self.device_assigner.get_device(0)):
all_predict = array_ops.pack(probabilities)
return math_ops.div(
math_ops.reduce_sum(all_predict, 0), self.params.num_trees,
name='probabilities')
示例11: crop_to_1d_bounding_box
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def crop_to_1d_bounding_box(image, offset_height, target_height,
dynamic_shape=False):
"""Crops an image to a specified bounding box.
This op cuts a rectangular part out of `image`. The top-left corner of the
returned image is at `offset_height, offset_width` in `image`, and its
lower-right corner is at
`offset_height + target_height, offset_width + target_width`.
Args:
image: 3-D tensor with shape `[height, width, channels]`
offset_height: Vertical coordinate of the top-left corner of the result in
the input.
target_height: Height of the result.
dynamic_shape: Whether the input image has undertermined shape. If set to
`True`, shape information will be retrieved at run time. Default to
`False`.
Returns:
3-D tensor of image with shape `[target_height, target_width, channels]`
Raises:
ValueError: If the shape of `image` is incompatible with the `offset_*` or
`target_*` arguments, and `dynamic_shape` is set to `False`.
"""
image = tf.convert_to_tensor(image, name='image')
height, _ = _ImageDimensions(image, dynamic_shape=dynamic_shape)
cropped = array_ops.slice(image,
array_ops.pack([offset_height, 0]),
array_ops.pack([target_height, -1]))
return cropped
示例12: crop_to_bounding_box
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def crop_to_bounding_box(image, offset_height, offset_width, target_height,
target_width, dynamic_shape=False):
"""Crops an image to a specified bounding box.
This op cuts a rectangular part out of `image`. The top-left corner of the
returned image is at `offset_height, offset_width` in `image`, and its
lower-right corner is at
`offset_height + target_height, offset_width + target_width`.
Args:
image: 3-D tensor with shape `[height, width, channels]`
offset_height: Vertical coordinate of the top-left corner of the result in
the input.
offset_width: Horizontal coordinate of the top-left corner of the result in
the input.
target_height: Height of the result.
target_width: Width of the result.
dynamic_shape: Whether the input image has undertermined shape. If set to
`True`, shape information will be retrieved at run time. Default to
`False`.
Returns:
3-D tensor of image with shape `[target_height, target_width, channels]`
Raises:
ValueError: If the shape of `image` is incompatible with the `offset_*` or
`target_*` arguments, and `dynamic_shape` is set to `False`.
"""
image = tf.convert_to_tensor(image, name='image')
_Check3DImage(image, require_static=(not dynamic_shape))
shapes = _ImageDimensions(image, dynamic_shape=dynamic_shape)
cropped = array_ops.slice(image,
array_ops.pack([offset_height, 0]),
array_ops.pack([target_height, -1]))
return cropped
# In[3]:
示例13: _reverse_seq
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def _reverse_seq(input_seq, lengths):
"""Reverse a list of Tensors up to specified lengths.
Args:
input_seq: Sequence of seq_len tensors of dimension (batch_size, depth)
lengths: A tensor of dimension batch_size, containing lengths for each
sequence in the batch. If "None" is specified, simply
reverses the list.
Returns:
time-reversed sequence
"""
if lengths is None:
return list(reversed(input_seq))
for input_ in input_seq:
input_.set_shape(input_.get_shape().with_rank(2))
# Join into (time, batch_size, depth)
s_joined = array_ops_.pack(input_seq)
# Reverse along dimension 0
s_reversed = array_ops_.reverse_sequence(s_joined, lengths, 0, 1)
# Split again into list
result = array_ops_.unpack(s_reversed)
return result
示例14: _reverse_seq
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def _reverse_seq(input_seq, lengths):
"""Reverse a list of Tensors up to specified lengths.
Args:
input_seq: Sequence of seq_len tensors of dimension (batch_size, depth)
lengths: A tensor of dimension batch_size, containing lengths for each
sequence in the batch. If "None" is specified, simply reverses
the list.
Returns:
time-reversed sequence
"""
if lengths is None:
return list(reversed(input_seq))
input_shape = tensor_shape.matrix(None, None)
for input_ in input_seq:
input_shape.merge_with(input_.get_shape())
input_.set_shape(input_shape)
# Join into (time, batch_size, depth)
s_joined = array_ops.pack(input_seq)
# TODO(schuster, ebrevdo): Remove cast when reverse_sequence takes int32
if lengths is not None:
lengths = math_ops.to_int64(lengths)
# Reverse along dimension 0
s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1)
# Split again into list
result = array_ops.unpack(s_reversed)
for r in result:
r.set_shape(input_shape)
return result
示例15: zero_state
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def zero_state(self, batch_size, dtype):
"""Return zero-filled state tensor(s).
Args:
batch_size: int, float, or unit Tensor representing the batch size.
dtype: the data type to use for the state.
Returns:
If `state_size` is an int or TensorShape, then the return value is a
`N-D` tensor of shape `[batch_size x state_size]` filled with zeros.
If `state_size` is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of `2-D` tensors with
the shapes `[batch_size x s]` for each s in `state_size`.
"""
state_size = self.state_size
if nest.is_sequence(state_size):
state_size_flat = nest.flatten(state_size)
zeros_flat = [
array_ops.zeros(
array_ops.pack(_state_size_with_prefix(s, prefix=[batch_size])),
dtype=dtype)
for s in state_size_flat]
for s, z in zip(state_size_flat, zeros_flat):
z.set_shape(_state_size_with_prefix(s, prefix=[None]))
zeros = nest.pack_sequence_as(structure=state_size,
flat_sequence=zeros_flat)
else:
zeros_size = _state_size_with_prefix(state_size, prefix=[batch_size])
zeros = array_ops.zeros(array_ops.pack(zeros_size), dtype=dtype)
zeros.set_shape(_state_size_with_prefix(state_size, prefix=[None]))
return zeros