當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.pack方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.pack方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.pack方法的具體用法?Python array_ops.pack怎麽用?Python array_ops.pack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.pack方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testBatch

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def testBatch(self):
    # Build an arbitrary RGB image
    np.random.seed(7)
    batch_size = 5
    shape = (batch_size, 2, 7, 3)

    for nptype in [np.float32, np.float64]:
      inp = np.random.rand(*shape).astype(nptype)

      # Convert to HSV and back, as a batch and individually
      with self.test_session(use_gpu=True) as sess:
        batch0 = constant_op.constant(inp)
        batch1 = image_ops.rgb_to_hsv(batch0)
        batch2 = image_ops.hsv_to_rgb(batch1)
        split0 = array_ops.unpack(batch0)
        split1 = list(map(image_ops.rgb_to_hsv, split0))
        split2 = list(map(image_ops.hsv_to_rgb, split1))
        join1 = array_ops.pack(split1)
        join2 = array_ops.pack(split2)
        batch1, batch2, join1, join2 = sess.run([batch1, batch2, join1, join2])

      # Verify that processing batch elements together is the same as separate
      self.assertAllClose(batch1, join1)
      self.assertAllClose(batch2, join2)
      self.assertAllClose(batch2, inp) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:image_ops_test.py

示例2: _SliceGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def _SliceGrad(op, grad):
  """Gradient for Slice op."""
  # Create an Nx2 padding where the first column represents how many
  # zeros are to be prepended for each dimension, and the second
  # column indicates how many zeros are appended.
  #
  # The number of zeros to append is the shape of the input
  # elementwise-subtracted by both the begin vector and sizes vector.
  #
  # Some more reshaping is needed to assemble this tensor with the
  # right dimensions.
  input_vec = op.inputs[0]
  begin_vec = op.inputs[1]
  input_rank = array_ops.rank(input_vec)
  slice_size = array_ops.shape(op.outputs[0])

  shape = array_ops.pack([input_rank, 1])
  before_pad = array_ops.reshape(begin_vec, shape)
  after_pad = array_ops.reshape(
      array_ops.shape(input_vec) - slice_size - begin_vec, shape)
  paddings = array_ops.concat(1, [before_pad, after_pad])
  return array_ops.pad(grad, paddings), None, None 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:24,代碼來源:array_grad.py

示例3: _TileGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def _TileGrad(op, grad):
  """Sum reduces grad along the tiled dimensions."""
  assert isinstance(grad, ops.Tensor)
  input_shape = array_ops.shape(op.inputs[0])
  # We interleave multiples and input_shape to get split_shape,
  # reshape grad to split_shape, and reduce along all even
  # dimensions (the tiled dimensions) to get the result
  # with shape input_shape.  For example
  #   input_shape = [20, 30, 40]
  #   multiples = [2, 3, 4]
  #   split_shape = [2, 20, 3, 30, 4, 40]
  #   axes = [0, 2, 4]
  split_shape = array_ops.reshape(array_ops.transpose(
      array_ops.pack([op.inputs[1], input_shape])), [-1])
  axes = math_ops.range(0, array_ops.size(split_shape), 2)
  input_grad = math_ops.reduce_sum(array_ops.reshape(grad, split_shape), axes)
  # Fix shape inference
  input_grad.set_shape(op.inputs[0].get_shape())
  return [input_grad, None] 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:array_grad.py

示例4: random_flip_up_down

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def random_flip_up_down(image, seed=None):
  """Randomly flips an image vertically (upside down).

  With a 1 in 2 chance, outputs the contents of `image` flipped along the first
  dimension, which is `height`.  Otherwise output the image as-is.

  Args:
    image: A 3-D tensor of shape `[height, width, channels].`
    seed: A Python integer. Used to create a random seed. See
      [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
      for behavior.

  Returns:
    A 3-D tensor of the same type and shape as `image`.

  Raises:
    ValueError: if the shape of `image` not supported.
  """
  image = ops.convert_to_tensor(image, name='image')
  _Check3DImage(image, require_static=False)
  uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
  mirror = math_ops.less(array_ops.pack([uniform_random, 1.0, 1.0]), 0.5)
  return array_ops.reverse(image, mirror) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:25,代碼來源:image_ops.py

示例5: random_flip_left_right

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def random_flip_left_right(image, seed=None):
  """Randomly flip an image horizontally (left to right).

  With a 1 in 2 chance, outputs the contents of `image` flipped along the
  second dimension, which is `width`.  Otherwise output the image as-is.

  Args:
    image: A 3-D tensor of shape `[height, width, channels].`
    seed: A Python integer. Used to create a random seed. See
      [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
      for behavior.

  Returns:
    A 3-D tensor of the same type and shape as `image`.

  Raises:
    ValueError: if the shape of `image` not supported.
  """
  image = ops.convert_to_tensor(image, name='image')
  _Check3DImage(image, require_static=False)
  uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed)
  mirror = math_ops.less(array_ops.pack([1.0, uniform_random, 1.0]), 0.5)
  return array_ops.reverse(image, mirror) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:25,代碼來源:image_ops.py

示例6: tensors_to_item

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def tensors_to_item(self, keys_to_tensors):
    tensor = keys_to_tensors[self._tensor_key]
    shape = self._shape
    if self._shape_keys:
      shape_dims = []
      for k in self._shape_keys:
        shape_dim = keys_to_tensors[k]
        if isinstance(shape_dim, sparse_tensor.SparseTensor):
          shape_dim = sparse_ops.sparse_tensor_to_dense(shape_dim)
        shape_dims.append(shape_dim)
      shape = array_ops.reshape(array_ops.pack(shape_dims), [-1])
    if isinstance(tensor, sparse_tensor.SparseTensor):
      if shape is not None:
        tensor = sparse_ops.sparse_reshape(tensor, shape)
      tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
    else:
      if shape is not None:
        tensor = array_ops.reshape(tensor, shape)
    return tensor 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:tfexample_decoder.py

示例7: _sample_n

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def _sample_n(self, n, seed=None):
    # Recall _assert_valid_mu ensures mu and self._cov have same batch shape.
    shape = array_ops.concat(0, [self._cov.vector_shape(), [n]])
    white_samples = random_ops.random_normal(shape=shape,
                                             mean=0.,
                                             stddev=1.,
                                             dtype=self.dtype,
                                             seed=seed)

    correlated_samples = self._cov.sqrt_matmul(white_samples)

    # Move the last dimension to the front
    perm = array_ops.concat(0, (
        array_ops.pack([array_ops.rank(correlated_samples) - 1]),
        math_ops.range(0, array_ops.rank(correlated_samples) - 1)))

    # TODO(ebrevdo): Once we get a proper tensor contraction op,
    # perform the inner product using that instead of batch_matmul
    # and this slow transpose can go away!
    correlated_samples = array_ops.transpose(correlated_samples, perm)
    samples = correlated_samples + self.mu
    return samples 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:24,代碼來源:mvn.py

示例8: _reverse_seq

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def _reverse_seq(input_seq, lengths):
    """Reverse a list of Tensors up to specified lengths.
    Args:
        input_seq: Sequence of seq_len tensors of dimension (batch_size, depth)
        lengths:   A tensor of dimension batch_size, containing lengths for each
                   sequence in the batch. If "None" is specified, simply reverses
                   the list.
    Returns:
        time-reversed sequence
    """
    for input_ in input_seq:
        input_.set_shape(input_.get_shape().with_rank(2))

    # Join into (time, batch_size, depth)
    s_joined = array_ops_.pack(input_seq)

    # Reverse along dimension 0
    s_reversed = array_ops_.reverse_sequence(s_joined, lengths, 0, 1)
    # Split again into list
    result = array_ops_.unpack(s_reversed)
    return result 
開發者ID:yuhui-lin,項目名稱:web_page_classification,代碼行數:23,代碼來源:model.py

示例9: zero_fast_weights

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def zero_fast_weights(self, batch_size, dtype):
    """Return zero-filled fast_weights tensor(s).

    Args:
      batch_size: int, float, or unit Tensor representing the batch size.
      dtype: the data type to use for the state.

    Returns:
      A zero filled fast_weights of shape [batch_size, state_size, state_size]
    """
    state_size = self.state_size

    zeros = array_ops.zeros(
        array_ops.pack([batch_size, state_size, state_size]), dtype=dtype)
    zeros.set_shape([None, state_size, state_size])

    return zeros 
開發者ID:jxwufan,項目名稱:AssociativeRetrieval,代碼行數:19,代碼來源:FastWeightsRNN.py

示例10: inference_graph

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def inference_graph(self, input_data, data_spec=None):
    """Constructs a TF graph for evaluating a random forest.

    Args:
      input_data: A tensor or SparseTensor or placeholder for input data.
      data_spec: A list of tf.dtype values specifying the original types of
        each column.

    Returns:
      The last op in the random forest inference graph.
    """
    data_spec = [constants.DATA_FLOAT] if data_spec is None else data_spec
    probabilities = []
    for i in range(self.params.num_trees):
      with ops.device(self.device_assigner.get_device(i)):
        tree_data = input_data
        if self.params.bagged_features:
          tree_data = self._bag_features(i, input_data)
        probabilities.append(self.trees[i].inference_graph(tree_data,
                                                           data_spec))
    with ops.device(self.device_assigner.get_device(0)):
      all_predict = array_ops.pack(probabilities)
      return math_ops.div(
          math_ops.reduce_sum(all_predict, 0), self.params.num_trees,
          name='probabilities') 
開發者ID:lbkchen,項目名稱:deep-learning,代碼行數:27,代碼來源:tensor_forest.py

示例11: crop_to_1d_bounding_box

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def crop_to_1d_bounding_box(image, offset_height, target_height,
                         dynamic_shape=False):
  """Crops an image to a specified bounding box.

  This op cuts a rectangular part out of `image`. The top-left corner of the
  returned image is at `offset_height, offset_width` in `image`, and its
  lower-right corner is at
  `offset_height + target_height, offset_width + target_width`.

  Args:
    image: 3-D tensor with shape `[height, width, channels]`
    offset_height: Vertical coordinate of the top-left corner of the result in
                   the input.
    target_height: Height of the result.
    dynamic_shape: Whether the input image has undertermined shape. If set to
      `True`, shape information will be retrieved at run time. Default to
      `False`.

  Returns:
    3-D tensor of image with shape `[target_height, target_width, channels]`

  Raises:
    ValueError: If the shape of `image` is incompatible with the `offset_*` or
    `target_*` arguments, and `dynamic_shape` is set to `False`.
  """
  image = tf.convert_to_tensor(image, name='image')
  height, _ = _ImageDimensions(image, dynamic_shape=dynamic_shape)

  cropped = array_ops.slice(image,
                            array_ops.pack([offset_height, 0]),
                            array_ops.pack([target_height, -1]))

  return cropped 
開發者ID:HyperGAN,項目名稱:HyperGAN,代碼行數:35,代碼來源:resize_audio_patch.py

示例12: crop_to_bounding_box

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def crop_to_bounding_box(image, offset_height, offset_width, target_height,
                         target_width, dynamic_shape=False):
  """Crops an image to a specified bounding box.

  This op cuts a rectangular part out of `image`. The top-left corner of the
  returned image is at `offset_height, offset_width` in `image`, and its
  lower-right corner is at
  `offset_height + target_height, offset_width + target_width`.

  Args:
    image: 3-D tensor with shape `[height, width, channels]`
    offset_height: Vertical coordinate of the top-left corner of the result in
                   the input.
    offset_width: Horizontal coordinate of the top-left corner of the result in
                  the input.
    target_height: Height of the result.
    target_width: Width of the result.
    dynamic_shape: Whether the input image has undertermined shape. If set to
      `True`, shape information will be retrieved at run time. Default to
      `False`.

  Returns:
    3-D tensor of image with shape `[target_height, target_width, channels]`

  Raises:
    ValueError: If the shape of `image` is incompatible with the `offset_*` or
    `target_*` arguments, and `dynamic_shape` is set to `False`.
  """
  image = tf.convert_to_tensor(image, name='image')
  _Check3DImage(image, require_static=(not dynamic_shape))
  shapes = _ImageDimensions(image, dynamic_shape=dynamic_shape)

  cropped = array_ops.slice(image,
                            array_ops.pack([offset_height, 0]),
                            array_ops.pack([target_height, -1]))

  return cropped


# In[3]: 
開發者ID:HyperGAN,項目名稱:HyperGAN,代碼行數:42,代碼來源:resize_audio_patch.py

示例13: _reverse_seq

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def _reverse_seq(input_seq, lengths):
  """Reverse a list of Tensors up to specified lengths.

  Args:
    input_seq: Sequence of seq_len tensors of dimension (batch_size, depth)
    lengths:   A tensor of dimension batch_size, containing lengths for each
               sequence in the batch. If "None" is specified, simply
               reverses the list.

  Returns:
    time-reversed sequence
  """
  if lengths is None:
    return list(reversed(input_seq))

  for input_ in input_seq:
    input_.set_shape(input_.get_shape().with_rank(2))

  # Join into (time, batch_size, depth)
  s_joined = array_ops_.pack(input_seq)

  # Reverse along dimension 0
  s_reversed = array_ops_.reverse_sequence(s_joined, lengths, 0, 1)
  # Split again into list
  result = array_ops_.unpack(s_reversed)
  return result 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:28,代碼來源:models.py

示例14: _reverse_seq

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def _reverse_seq(input_seq, lengths):
  """Reverse a list of Tensors up to specified lengths.
  Args:
    input_seq: Sequence of seq_len tensors of dimension (batch_size, depth)
    lengths:   A tensor of dimension batch_size, containing lengths for each
               sequence in the batch. If "None" is specified, simply reverses
               the list.
  Returns:
    time-reversed sequence
  """
  if lengths is None:
    return list(reversed(input_seq))

  input_shape = tensor_shape.matrix(None, None)
  for input_ in input_seq:
    input_shape.merge_with(input_.get_shape())
    input_.set_shape(input_shape)

  # Join into (time, batch_size, depth)
  s_joined = array_ops.pack(input_seq)

  # TODO(schuster, ebrevdo): Remove cast when reverse_sequence takes int32
  if lengths is not None:
    lengths = math_ops.to_int64(lengths)

  # Reverse along dimension 0
  s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1)
  # Split again into list
  result = array_ops.unpack(s_reversed)
  for r in result:
    r.set_shape(input_shape)
  return result 
開發者ID:uwnlp,項目名稱:qrn,代碼行數:34,代碼來源:rnn.py

示例15: zero_state

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import pack [as 別名]
def zero_state(self, batch_size, dtype):
    """Return zero-filled state tensor(s).

    Args:
      batch_size: int, float, or unit Tensor representing the batch size.
      dtype: the data type to use for the state.

    Returns:
      If `state_size` is an int or TensorShape, then the return value is a
      `N-D` tensor of shape `[batch_size x state_size]` filled with zeros.

      If `state_size` is a nested list or tuple, then the return value is
      a nested list or tuple (of the same structure) of `2-D` tensors with
    the shapes `[batch_size x s]` for each s in `state_size`.
    """
    state_size = self.state_size
    if nest.is_sequence(state_size):
      state_size_flat = nest.flatten(state_size)
      zeros_flat = [
          array_ops.zeros(
              array_ops.pack(_state_size_with_prefix(s, prefix=[batch_size])),
              dtype=dtype)
          for s in state_size_flat]
      for s, z in zip(state_size_flat, zeros_flat):
        z.set_shape(_state_size_with_prefix(s, prefix=[None]))
      zeros = nest.pack_sequence_as(structure=state_size,
                                    flat_sequence=zeros_flat)
    else:
      zeros_size = _state_size_with_prefix(state_size, prefix=[batch_size])
      zeros = array_ops.zeros(array_ops.pack(zeros_size), dtype=dtype)
      zeros.set_shape(_state_size_with_prefix(state_size, prefix=[None]))

    return zeros 
開發者ID:Guanghan,項目名稱:ROLO,代碼行數:35,代碼來源:rnn_cell.py


注:本文中的tensorflow.python.ops.array_ops.pack方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。