本文整理匯總了Python中tensorflow.python.ops.array_ops.ones_like方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.ones_like方法的具體用法?Python array_ops.ones_like怎麽用?Python array_ops.ones_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.ones_like方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _sample_n
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def _sample_n(self, n, seed=None):
expanded_concentration1 = array_ops.ones_like(
self.total_concentration, dtype=self.dtype) * self.concentration1
expanded_concentration0 = array_ops.ones_like(
self.total_concentration, dtype=self.dtype) * self.concentration0
gamma1_sample = random_ops.random_gamma(
shape=[n],
alpha=expanded_concentration1,
dtype=self.dtype,
seed=seed)
gamma2_sample = random_ops.random_gamma(
shape=[n],
alpha=expanded_concentration0,
dtype=self.dtype,
seed=distribution_util.gen_new_seed(seed, "beta"))
beta_sample = gamma1_sample / (gamma1_sample + gamma2_sample)
return beta_sample
示例2: _log_prob
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def _log_prob(self, event):
event = self._maybe_assert_valid_sample(event)
# TODO(jaana): The current sigmoid_cross_entropy_with_logits has
# inconsistent behavior for logits = inf/-inf.
event = math_ops.cast(event, self.logits.dtype)
logits = self.logits
# sigmoid_cross_entropy_with_logits doesn't broadcast shape,
# so we do this here.
def _broadcast(logits, event):
return (array_ops.ones_like(event) * logits,
array_ops.ones_like(logits) * event)
# First check static shape.
if (event.get_shape().is_fully_defined() and
logits.get_shape().is_fully_defined()):
if event.get_shape() != logits.get_shape():
logits, event = _broadcast(logits, event)
else:
logits, event = control_flow_ops.cond(
distribution_util.same_dynamic_shape(logits, event),
lambda: (logits, event),
lambda: _broadcast(logits, event))
return -nn.sigmoid_cross_entropy_with_logits(labels=event, logits=logits)
示例3: ones_like
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def ones_like(x, dtype=None, name=None):
"""Instantiates an all-ones variable of the same shape as another tensor.
Arguments:
x: Keras variable or tensor.
dtype: String, dtype of returned Keras variable.
None uses the dtype of x.
name: String, name for the variable to create.
Returns:
A Keras variable with the shape of x filled with ones.
Example:
```python
>>> from keras import backend as K
>>> kvar = K.variable(np.random.random((2,3)))
>>> kvar_ones = K.ones_like(kvar)
>>> K.eval(kvar_ones)
array([[ 1., 1., 1.],
[ 1., 1., 1.]], dtype=float32)
```
"""
return array_ops.ones_like(x, dtype=dtype, name=name)
示例4: _log_prob
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def _log_prob(self, x):
x = self._assert_valid_sample(x)
# broadcast logits or x if need be.
logits = self.logits
if (not x.get_shape().is_fully_defined() or
not logits.get_shape().is_fully_defined() or
x.get_shape() != logits.get_shape()):
logits = array_ops.ones_like(x, dtype=logits.dtype) * logits
x = array_ops.ones_like(logits, dtype=x.dtype) * x
logits_shape = array_ops.shape(math_ops.reduce_sum(logits, -1))
logits_2d = array_ops.reshape(logits, [-1, self.event_size])
x_2d = array_ops.reshape(x, [-1, self.event_size])
ret = -nn_ops.softmax_cross_entropy_with_logits(labels=x_2d,
logits=logits_2d)
# Reshape back to user-supplied batch and sample dims prior to 2D reshape.
ret = array_ops.reshape(ret, logits_shape)
return ret
示例5: _sample_n
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def _sample_n(self, n, seed=None):
low = self._low
high = self._high
with ops.name_scope("transform"):
n = ops.convert_to_tensor(n, name="n")
x_samps = self.distribution.sample(n, seed=seed)
ones = array_ops.ones_like(x_samps)
# Snap values to the intervals (j - 1, j].
result_so_far = math_ops.ceil(x_samps)
if low is not None:
result_so_far = array_ops.where(result_so_far < low,
low * ones, result_so_far)
if high is not None:
result_so_far = array_ops.where(result_so_far > high,
high * ones, result_so_far)
return result_so_far
示例6: _bdtr
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def _bdtr(k, n, p):
"""The binomial cumulative distribution function.
Args:
k: floating point `Tensor`.
n: floating point `Tensor`.
p: floating point `Tensor`.
Returns:
`sum_{j=0}^k p^j (1 - p)^(n - j)`.
"""
# Trick for getting safe backprop/gradients into n, k when
# betainc(a = 0, ..) = nan
# Write:
# where(unsafe, safe_output, betainc(where(unsafe, safe_input, input)))
ones = array_ops.ones_like(n - k)
k_eq_n = math_ops.equal(k, n)
safe_dn = array_ops.where(k_eq_n, ones, n - k)
dk = math_ops.betainc(a=safe_dn, b=k + 1, x=1 - p)
return array_ops.where(k_eq_n, ones, dk)
示例7: _safe_div
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def _safe_div(numerator, denominator, name="value"):
"""Computes a safe divide which returns 0 if the denominator is zero.
Note that the function contains an additional conditional check that is
necessary for avoiding situations where the loss is zero causing NaNs to
creep into the gradient computation.
Args:
numerator: An arbitrary `Tensor`.
denominator: A `Tensor` whose shape matches `numerator` and whose values are
assumed to be non-negative.
name: An optional name for the returned op.
Returns:
The element-wise value of the numerator divided by the denominator.
"""
return array_ops.where(
math_ops.greater(denominator, 0),
math_ops.div(numerator, array_ops.where(
math_ops.equal(denominator, 0),
array_ops.ones_like(denominator), denominator)),
array_ops.zeros_like(numerator),
name=name)
示例8: hinge_loss
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def hinge_loss(logits, labels=None, scope=None):
"""Method that returns the loss tensor for hinge loss.
Args:
logits: The logits, a float tensor.
labels: The ground truth output tensor. Its shape should match the shape of
logits. The values of the tensor are expected to be 0.0 or 1.0.
scope: The scope for the operations performed in computing the loss.
Returns:
A `Tensor` of same shape as `logits` and `labels` representing the loss
values across the batch.
Raises:
ValueError: If the shapes of `logits` and `labels` don't match.
"""
with ops.name_scope(scope, "hinge_loss", [logits, labels]) as scope:
logits.get_shape().assert_is_compatible_with(labels.get_shape())
# We first need to convert binary labels to -1/1 labels (as floats).
labels = math_ops.to_float(labels)
all_ones = array_ops.ones_like(labels)
labels = math_ops.subtract(2 * labels, all_ones)
return nn_ops.relu(
math_ops.subtract(all_ones, math_ops.multiply(labels, logits)))
示例9: _safe_div
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def _safe_div(numerator, denominator, name="value"):
"""Computes a safe divide which returns 0 if the denominator is zero.
Note that the function contains an additional conditional check that is
necessary for avoiding situations where the loss is zero causing NaNs to
creep into the gradient computation.
Args:
numerator: An arbitrary `Tensor`.
denominator: `Tensor` whose shape matches `numerator` and whose values are
assumed to be non-negative.
name: An optional name for the returned op.
Returns:
The element-wise value of the numerator divided by the denominator.
"""
return array_ops.where(
math_ops.greater(denominator, 0),
math_ops.div(numerator, array_ops.where(
math_ops.equal(denominator, 0),
array_ops.ones_like(denominator), denominator)),
array_ops.zeros_like(numerator),
name=name)
示例10: average_impurity
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def average_impurity(self):
"""Constructs a TF graph for evaluating the average leaf impurity of a tree.
If in regression mode, this is the leaf variance. If in classification mode,
this is the gini impurity.
Returns:
The last op in the graph.
"""
children = array_ops.squeeze(array_ops.slice(
self.variables.tree, [0, 0], [-1, 1]), squeeze_dims=[1])
is_leaf = math_ops.equal(constants.LEAF_NODE, children)
leaves = math_ops.to_int32(array_ops.squeeze(array_ops.where(is_leaf),
squeeze_dims=[1]))
counts = array_ops.gather(self.variables.node_sums, leaves)
gini = self._weighted_gini(counts)
# Guard against step 1, when there often are no leaves yet.
def impurity():
return gini
# Since average impurity can be used for loss, when there's no data just
# return a big number so that loss always decreases.
def big():
return array_ops.ones_like(gini, dtype=dtypes.float32) * 10000000.
return control_flow_ops.cond(math_ops.greater(
array_ops.shape(leaves)[0], 0), impurity, big)
示例11: remove
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def remove(self, ids):
"""Remove the ids (and their associated scores) from the TopN."""
with ops.control_dependencies(self.last_ops):
scatter_op = state_ops.scatter_update(
self.id_to_score,
ids,
array_ops.ones_like(
ids, dtype=dtypes.float32) * dtypes.float32.min)
# We assume that removed ids are almost always in the shortlist,
# so it makes no sense to hide the Op behind a tf.cond
shortlist_ids_to_remove, new_length = tensor_forest_ops.top_n_remove(
self.sl_ids, ids)
u1 = state_ops.scatter_update(
self.sl_ids,
array_ops.concat([[0], shortlist_ids_to_remove], 0),
array_ops.concat(
[new_length, array_ops.ones_like(shortlist_ids_to_remove) * -1],
0))
u2 = state_ops.scatter_update(
self.sl_scores,
shortlist_ids_to_remove,
dtypes.float32.min * array_ops.ones_like(
shortlist_ids_to_remove, dtype=dtypes.float32))
self.last_ops = [scatter_op, u1, u2]
示例12: _log_prob
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def _log_prob(self, x):
x = ops.convert_to_tensor(x, name="x")
# broadcast logits or x if need be.
logits = self.logits
if (not x.get_shape().is_fully_defined() or
not logits.get_shape().is_fully_defined() or
x.get_shape() != logits.get_shape()):
logits = array_ops.ones_like(x, dtype=logits.dtype) * logits
x = array_ops.ones_like(logits, dtype=x.dtype) * x
logits_shape = array_ops.shape(logits)
if logits.get_shape().ndims == 2:
logits_2d = logits
x_2d = x
else:
logits_2d = array_ops.reshape(logits, [-1, self.num_classes])
x_2d = array_ops.reshape(x, [-1, self.num_classes])
ret = -nn_ops.softmax_cross_entropy_with_logits(labels=x_2d,
logits=logits_2d)
ret = array_ops.reshape(ret, logits_shape)
return ret
示例13: _sample_n
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def _sample_n(self, n, seed=None):
lower_cutoff = self._lower_cutoff
upper_cutoff = self._upper_cutoff
with ops.name_scope("transform"):
n = ops.convert_to_tensor(n, name="n")
x_samps = self.distribution.sample(n, seed=seed)
ones = array_ops.ones_like(x_samps)
# Snap values to the intervals (j - 1, j].
result_so_far = math_ops.ceil(x_samps)
if lower_cutoff is not None:
result_so_far = array_ops.where(result_so_far < lower_cutoff,
lower_cutoff * ones, result_so_far)
if upper_cutoff is not None:
result_so_far = array_ops.where(result_so_far > upper_cutoff,
upper_cutoff * ones, result_so_far)
return result_so_far
示例14: __call__
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def __call__(self, inputs, state, scope=None):
"""Run the cell with the declared zoneouts."""
# compute output and new state as before
output, new_state = self._cell(inputs, state, scope)
# if either hidden state or memory cell zoneout is applied, then split state and process
if self._has_hidden_state_zoneout or self._has_memory_cell_zoneout:
# split state
c_old, m_old = state
c_new, m_new = new_state
# apply zoneout to memory cell and hidden state
c_and_m = []
for s_old, s_new, p, has_zoneout in [(c_old, c_new, self._memory_cell_keep_prob, self._has_memory_cell_zoneout),
(m_old, m_new, self._hidden_state_keep_prob, self._has_hidden_state_zoneout)]:
if has_zoneout:
if self._is_training:
mask = nn_ops.dropout(array_ops.ones_like(s_new), p, seed=self._seed) * p # this should just random ops instead. See dropout code for how.
s = ((1. - mask) * s_old) + (mask * s_new)
else:
s = ((1. - p) * s_old) + (p * s_new)
else:
s = s_new
c_and_m.append(s)
# package final results
new_state = LSTMStateTuple(*c_and_m)
output = new_state.h
return output, new_state
示例15: _create_slots
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones_like [as 別名]
def _create_slots(self, var_list):
for v in var_list:
self._zeros_slot(v, "momentum", self._name)
self._zeros_slot(v, "gbar", self._name)
g_tensor = ops.convert_to_tensor(v)
gain_init = self._initial_gain * array_ops.ones_like(g_tensor)
_ = self._get_or_make_slot(v, self._initial_scale * array_ops.ones((1)),
"lr_scale", self._name)
_ = self._get_or_make_slot(v, gain_init, "gain", self._name)
_ = self._get_or_make_slot(v, array_ops.zeros((1)), "counter", self._name)