本文整理匯總了Python中tensorflow.python.ops.array_ops.ones方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.ones方法的具體用法?Python array_ops.ones怎麽用?Python array_ops.ones使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.ones方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: dense_to_sparse
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def dense_to_sparse(tensor, eos_token=0, outputs_collections=None, scope=None):
"""Converts a dense tensor into a sparse tensor.
An example use would be to convert dense labels to sparse ones
so that they can be fed to the ctc_loss.
Args:
tensor: An `int` `Tensor` to be converted to a `Sparse`.
eos_token: An integer. It is part of the target label that signifies the
end of a sentence.
outputs_collections: Collection to add the outputs.
scope: Optional scope for name_scope.
"""
with variable_scope.variable_scope(scope, 'dense_to_sparse', [tensor]) as sc:
tensor = ops.convert_to_tensor(tensor)
indices = array_ops.where(
math_ops.not_equal(tensor, constant_op.constant(eos_token,
tensor.dtype)))
values = array_ops.gather_nd(tensor, indices)
shape = array_ops.shape(tensor, out_type=dtypes.int64)
outputs = sparse_tensor.SparseTensor(indices, values, shape)
return utils.collect_named_outputs(outputs_collections, sc.name, outputs)
示例2: _sample_n
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def _sample_n(self, n, seed=None):
# The sampling method comes from the fact that if:
# X ~ Normal(0, 1)
# Z ~ Chi2(df)
# Y = X / sqrt(Z / df)
# then:
# Y ~ StudentT(df).
shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
normal_sample = random_ops.random_normal(shape, dtype=self.dtype, seed=seed)
df = self.df * array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)
gamma_sample = random_ops.random_gamma(
[n],
0.5 * df,
beta=0.5,
dtype=self.dtype,
seed=distribution_util.gen_new_seed(seed, salt="student_t"))
samples = normal_sample * math_ops.rsqrt(gamma_sample / df)
return samples * self.scale + self.loc # Abs(scale) not wanted.
示例3: _mean
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def _mean(self):
mean = self.loc * array_ops.ones(self.batch_shape_tensor(),
dtype=self.dtype)
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
return array_ops.where(
math_ops.greater(
self.df,
array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)),
mean,
array_ops.fill(self.batch_shape_tensor(), nan, name="nan"))
else:
return control_flow_ops.with_dependencies(
[
check_ops.assert_less(
array_ops.ones([], dtype=self.dtype),
self.df,
message="mean not defined for components of df <= 1"),
],
mean)
示例4: _mode
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def _mode(self):
k = math_ops.cast(self.event_shape_tensor()[0], self.dtype)
mode = (self.concentration - 1.) / (
self.total_concentration[..., array_ops.newaxis] - k)
if self.allow_nan_stats:
nan = array_ops.fill(
array_ops.shape(mode),
np.array(np.nan, dtype=self.dtype.as_numpy_dtype()),
name="nan")
return array_ops.where(
math_ops.reduce_all(self.concentration > 1., axis=-1),
mode, nan)
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones([], self.dtype),
self.concentration,
message="Mode undefined when any concentration <= 1"),
], mode)
示例5: ones_like
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def ones_like(x, dtype=None, name=None):
"""Instantiates an all-ones variable of the same shape as another tensor.
Arguments:
x: Keras variable or tensor.
dtype: String, dtype of returned Keras variable.
None uses the dtype of x.
name: String, name for the variable to create.
Returns:
A Keras variable with the shape of x filled with ones.
Example:
```python
>>> from keras import backend as K
>>> kvar = K.variable(np.random.random((2,3)))
>>> kvar_ones = K.ones_like(kvar)
>>> K.eval(kvar_ones)
array([[ 1., 1., 1.],
[ 1., 1., 1.]], dtype=float32)
```
"""
return array_ops.ones_like(x, dtype=dtype, name=name)
示例6: random_binomial
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def random_binomial(shape, p=0.0, dtype=None, seed=None):
"""Returns a tensor with random binomial distribution of values.
Arguments:
shape: A tuple of integers, the shape of tensor to create.
p: A float, `0. <= p <= 1`, probability of binomial distribution.
dtype: String, dtype of returned tensor.
seed: Integer, random seed.
Returns:
A tensor.
"""
if dtype is None:
dtype = floatx()
if seed is None:
seed = np.random.randint(10e6)
return array_ops.where(
random_ops.random_uniform(shape, dtype=dtype, seed=seed) <= p,
array_ops.ones(shape, dtype=dtype), array_ops.zeros(shape, dtype=dtype))
示例7: _process_matrix
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def _process_matrix(self, matrix, min_rank, event_ndims):
"""Helper to __init__ which gets matrix in batch-ready form."""
# Pad the matrix so that matmul works in the case of a matrix and vector
# input. Keep track if the matrix was padded, to distinguish between a
# rank 3 tensor and a padded rank 2 tensor.
# TODO(srvasude): Remove side-effects from functions. Its currently unbroken
# but error-prone since the function call order may change in the future.
self._rank_two_event_ndims_one = math_ops.logical_and(
math_ops.equal(array_ops.rank(matrix), min_rank),
math_ops.equal(event_ndims, 1))
left = array_ops.where(self._rank_two_event_ndims_one, 1, 0)
pad = array_ops.concat(
[array_ops.ones(
[left], dtype=dtypes.int32), array_ops.shape(matrix)],
0)
return array_ops.reshape(matrix, pad)
示例8: _sample_n
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def _sample_n(self, n, seed=None):
sample_shape = array_ops.concat([[n], array_ops.shape(self.logits)], 0)
logits = self.logits * array_ops.ones(sample_shape)
logits_2d = array_ops.reshape(logits, [-1, self.event_size])
# Uniform variates must be sampled from the open-interval `(0, 1)` rather
# than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
# because it is the smallest, positive, "normal" number. A "normal" number
# is such that the mantissa has an implicit leading 1. Normal, positive
# numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
# this case, a subnormal number (i.e., np.nextafter) can cause us to sample
# 0.
uniform = random_ops.random_uniform(
shape=array_ops.shape(logits_2d),
minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
maxval=1.,
dtype=self.dtype,
seed=seed)
gumbel = -math_ops.log(-math_ops.log(uniform))
noisy_logits = math_ops.div(gumbel + logits_2d, self._temperature_2d)
samples = nn_ops.log_softmax(noisy_logits)
ret = array_ops.reshape(samples, sample_shape)
return ret
示例9: _add
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def _add(self, op1, op2, operator_name, hints):
# Will build a LinearOperatorScaledIdentity.
if _type(op1) == _SCALED_IDENTITY:
multiplier_1 = op1.multiplier
else:
multiplier_1 = array_ops.ones(op1.batch_shape_tensor(), dtype=op1.dtype)
if _type(op2) == _SCALED_IDENTITY:
multiplier_2 = op2.multiplier
else:
multiplier_2 = array_ops.ones(op2.batch_shape_tensor(), dtype=op2.dtype)
return linear_operator_identity.LinearOperatorScaledIdentity(
num_rows=op1.range_dimension_tensor(),
multiplier=multiplier_1 + multiplier_2,
is_non_singular=hints.is_non_singular,
is_self_adjoint=hints.is_self_adjoint,
is_positive_definite=hints.is_positive_definite,
name=operator_name)
示例10: _mode
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def _mode(self):
mode = (self.a - 1.)/ (self.a_b_sum - 2.)
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
return array_ops.where(
math_ops.logical_and(
math_ops.greater(self.a, 1.),
math_ops.greater(self.b, 1.)),
mode,
array_ops.fill(self.batch_shape(), nan, name="nan"))
else:
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones((), dtype=self.dtype), self.a,
message="Mode not defined for components of a <= 1."),
check_ops.assert_less(
array_ops.ones((), dtype=self.dtype), self.b,
message="Mode not defined for components of b <= 1."),
], mode)
示例11: _sample_n
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def _sample_n(self, n, seed=None):
# The sampling method comes from the fact that if:
# X ~ Normal(0, 1)
# Z ~ Chi2(df)
# Y = X / sqrt(Z / df)
# then:
# Y ~ StudentT(df).
shape = array_ops.concat([[n], self.batch_shape()], 0)
normal_sample = random_ops.random_normal(shape, dtype=self.dtype, seed=seed)
df = self.df * array_ops.ones(self.batch_shape(), dtype=self.dtype)
gamma_sample = random_ops.random_gamma(
[n],
0.5 * df,
beta=0.5,
dtype=self.dtype,
seed=distribution_util.gen_new_seed(seed, salt="student_t"))
samples = normal_sample / math_ops.sqrt(gamma_sample / df)
return samples * self.sigma + self.mu # Abs(sigma) not wanted.
示例12: _process_matrix
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def _process_matrix(self, matrix, min_rank, event_ndims):
"""Helper to __init__ which gets matrix in batch-ready form."""
# Pad the matrix so that matmul works in the case of a matrix and vector
# input. Keep track if the matrix was padded, to distinguish between a
# rank 3 tensor and a padded rank 2 tensor.
# TODO(srvasude): Remove side-effects from functions. Its currently unbroken
# but error-prone since the function call order may change in the future.
self._rank_two_event_ndims_one = math_ops.logical_and(
math_ops.equal(array_ops.rank(matrix), min_rank),
math_ops.equal(event_ndims, 1))
left = array_ops.where(self._rank_two_event_ndims_one, 1, 0)
pad = array_ops.concat(
[array_ops.ones(
[left], dtype=dtypes.int32), array_ops.shape(matrix)],
0)
return array_ops.reshape(matrix, pad)
示例13: _mode
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def _mode(self):
mode = ((self.alpha - 1.) /
(array_ops.expand_dims(self.alpha_sum, dim=-1) -
math_ops.cast(self.event_shape()[0], self.dtype)))
if self.allow_nan_stats:
nan = np.array(np.nan, dtype=self.dtype.as_numpy_dtype())
shape = array_ops.concat((self.batch_shape(), self.event_shape()), 0)
return array_ops.where(
math_ops.greater(self.alpha, 1.),
mode,
array_ops.fill(shape, nan, name="nan"))
else:
return control_flow_ops.with_dependencies([
check_ops.assert_less(
array_ops.ones((), dtype=self.dtype), self.alpha,
message="mode not defined for components of alpha <= 1")
], mode)
示例14: _sample_n
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def _sample_n(self, n, seed=None):
sample_shape = array_ops.concat(([n], array_ops.shape(self.logits)), 0)
logits = self.logits * array_ops.ones(sample_shape)
if logits.get_shape().ndims == 2:
logits_2d = logits
else:
logits_2d = array_ops.reshape(logits, [-1, self.num_classes])
np_dtype = self.dtype.as_numpy_dtype()
minval = np.nextafter(np_dtype(0), np_dtype(1))
uniform = random_ops.random_uniform(shape=array_ops.shape(logits_2d),
minval=minval,
maxval=1,
dtype=self.dtype,
seed=seed)
gumbel = - math_ops.log(- math_ops.log(uniform))
noisy_logits = math_ops.div(gumbel + logits_2d, self.temperature)
samples = nn_ops.log_softmax(noisy_logits)
ret = array_ops.reshape(samples, sample_shape)
return ret
示例15: test_axis_order_scope
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import ones [as 別名]
def test_axis_order_scope(self):
xz_lt = core.LabeledTensor(array_ops.ones((2, 3)), ['x', 'z'])
yz_lt = core.LabeledTensor(array_ops.ones((4, 3)), ['y', 'z'])
_, _, broadcast_axes = core.align(xz_lt, yz_lt)
self.assertEqual(list(broadcast_axes.keys()), ['x', 'y', 'z'])
_, _, broadcast_axes = core.align(yz_lt, xz_lt)
self.assertEqual(list(broadcast_axes.keys()), ['y', 'x', 'z'])
with core.axis_order_scope(['x', 'y', 'z']):
_, _, broadcast_axes = core.align(yz_lt, xz_lt)
self.assertEqual(list(broadcast_axes.keys()), ['x', 'y', 'z'])
with core.axis_order_scope(['x', 'y']):
with self.assertRaises(core.AxisOrderError):
core.align(xz_lt, yz_lt)
with self.assertRaises(core.AxisOrderError):
core.align(yz_lt, xz_lt)