當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.one_hot方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.one_hot方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.one_hot方法的具體用法?Python array_ops.one_hot怎麽用?Python array_ops.one_hot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.one_hot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _sample_n

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def _sample_n(self, n, seed=None):
    n_draws = math_ops.cast(self.total_count, dtype=dtypes.int32)
    if self.total_count.get_shape().ndims is not None:
      if self.total_count.get_shape().ndims != 0:
        raise NotImplementedError(
            "Sample only supported for scalar number of draws.")
    elif self.validate_args:
      is_scalar = check_ops.assert_rank(
          n_draws, 0,
          message="Sample only supported for scalar number of draws.")
      n_draws = control_flow_ops.with_dependencies([is_scalar], n_draws)
    k = self.event_shape_tensor()[0]
    # Flatten batch dims so logits has shape [B, k],
    # where B = reduce_prod(self.batch_shape_tensor()).
    draws = random_ops.multinomial(
        logits=array_ops.reshape(self.logits, [-1, k]),
        num_samples=n * n_draws,
        seed=seed)
    draws = array_ops.reshape(draws, shape=[-1, n, n_draws])
    x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k),
                            axis=-2)  # shape: [B, n, k]
    x = array_ops.transpose(x, perm=[1, 0, 2])
    final_shape = array_ops.concat([[n], self.batch_shape_tensor(), [k]], 0)
    return array_ops.reshape(x, final_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:multinomial.py

示例2: _sample_n

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def _sample_n(self, n, seed=None):
    n_draws = math_ops.cast(self.total_count, dtype=dtypes.int32)
    k = self.event_shape_tensor()[0]
    unnormalized_logits = array_ops.reshape(
        math_ops.log(random_ops.random_gamma(
            shape=[n],
            alpha=self.concentration,
            dtype=self.dtype,
            seed=seed)),
        shape=[-1, k])
    draws = random_ops.multinomial(
        logits=unnormalized_logits,
        num_samples=n_draws,
        seed=distribution_util.gen_new_seed(seed, salt="dirichlet_multinomial"))
    x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k), -2)
    final_shape = array_ops.concat([[n], self.batch_shape_tensor(), [k]], 0)
    return array_ops.reshape(x, final_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:dirichlet_multinomial.py

示例3: one_hot

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def one_hot(indices, num_classes):
  """Computes the one-hot representation of an integer tensor.

  Arguments:
      indices: nD integer tensor of shape
          `(batch_size, dim1, dim2, ... dim(n-1))`
      num_classes: Integer, number of classes to consider.

  Returns:
      (n + 1)D one hot representation of the input
      with shape `(batch_size, dim1, dim2, ... dim(n-1), num_classes)`

  Returns:
      The one-hot tensor.
  """
  return array_ops.one_hot(indices, depth=num_classes, axis=-1) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:backend.py

示例4: _estimate_data_distribution

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def _estimate_data_distribution(c, num_examples_per_class_seen):
  """Estimate data distribution as labels are seen.

  Args:
    c: The class labels.  Type `int32`, shape `[batch_size]`.
    num_examples_per_class_seen: A `ResourceVariable` containing counts.
      Type `int64`, shape `[num_classes]`.

  Returns:
    dist: The updated distribution.  Type `float32`, shape `[num_classes]`.
  """
  num_classes = num_examples_per_class_seen.get_shape()[0].value
  # Update the class-count based on what labels are seen in
  # batch.  But do this asynchronously to avoid performing a
  # cross-device round-trip.  Just use the cached value.
  num_examples_per_class_seen = num_examples_per_class_seen.assign_add(
      math_ops.reduce_sum(
          array_ops.one_hot(c, num_classes, dtype=dtypes.int64),
          0))
  init_prob_estimate = math_ops.truediv(
      num_examples_per_class_seen,
      math_ops.reduce_sum(num_examples_per_class_seen))
  return math_ops.cast(init_prob_estimate, dtypes.float32) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:dataset_ops.py

示例5: hardmax

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def hardmax(logits, name=None):
  """Returns batched one-hot vectors.

  The depth index containing the `1` is that of the maximum logit value.

  Args:
    logits: A batch tensor of logit values.
    name: Name to use when creating ops.
  Returns:
    A batched one-hot tensor.
  """
  with ops.name_scope(name, "Hardmax", [logits]):
    logits = ops.convert_to_tensor(logits, name="logits")
    if logits.get_shape()[-1].value is not None:
      depth = logits.get_shape()[-1].value
    else:
      depth = array_ops.shape(logits)[-1]
    return array_ops.one_hot(
        math_ops.argmax(logits, -1), depth, dtype=logits.dtype) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:attention_wrapper.py

示例6: _sample_n

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def _sample_n(self, n, seed=None):
    n_draws = math_ops.cast(self.n, dtype=dtypes.int32)
    if self.n.get_shape().ndims is not None:
      if self.n.get_shape().ndims != 0:
        raise NotImplementedError(
            "Sample only supported for scalar number of draws.")
    elif self.validate_args:
      is_scalar = check_ops.assert_rank(
          n_draws, 0,
          message="Sample only supported for scalar number of draws.")
      n_draws = control_flow_ops.with_dependencies([is_scalar], n_draws)
    k = self.event_shape()[0]
    # Flatten batch dims so logits has shape [B, k],
    # where B = reduce_prod(self.batch_shape()).
    logits = array_ops.reshape(self.logits, [-1, k])
    draws = random_ops.multinomial(logits=logits,
                                   num_samples=n * n_draws,
                                   seed=seed)
    draws = array_ops.reshape(draws, shape=[-1, n, n_draws])
    x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k),
                            reduction_indices=-2)  # shape: [B, n, k]
    x = array_ops.transpose(x, perm=[1, 0, 2])
    final_shape = array_ops.concat([[n], self.batch_shape(), [k]], 0)
    return array_ops.reshape(x, final_shape) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:26,代碼來源:multinomial.py

示例7: one_hot_matrix

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def one_hot_matrix(tensor_in, num_classes, on_value=1.0, off_value=0.0):
  """Encodes indices from given tensor as one-hot tensor.

  TODO(ilblackdragon): Ideally implementation should be
  part of TensorFlow with Eigen-native operation.

  Args:
    tensor_in: Input tensor of shape [N1, N2].
    num_classes: Number of classes to expand index into.
    on_value: Tensor or float, value to fill-in given index.
    off_value: Tensor or float, value to fill-in everything else.
  Returns:
    Tensor of shape [N1, N2, num_classes] with 1.0 for each id in original
    tensor.
  """
  return array_ops_.one_hot(
      math_ops.cast(tensor_in, dtypes.int64), num_classes, on_value, off_value) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:array_ops.py

示例8: initial_alignments

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def initial_alignments(self, batch_size, dtype):
        """Creates the initial alignment values for the monotonic attentions.

        Initializes to dirac distributions, i.e. [1, 0, 0, ...memory length..., 0]
        for all entries in the batch.

        Args:
          batch_size: `int32` scalar, the batch_size.
          dtype: The `dtype`.

        Returns:
          A `dtype` tensor shaped `[batch_size, alignments_size]`
          (`alignments_size` is the values' `max_time`).
        """
        max_time = self._alignments_size
        return array_ops.one_hot(
            array_ops.zeros((batch_size,), dtype=dtypes.int32), max_time,
            dtype=dtype) 
開發者ID:HareeshBahuleyan,項目名稱:tf-var-attention,代碼行數:20,代碼來源:attention_wrapper.py

示例9: hardmax

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def hardmax(logits, name=None):
    """Returns batched one-hot vectors.

    The depth index containing the `1` is that of the maximum logit value.

    Args:
      logits: A batch tensor of logit values.
      name: Name to use when creating ops.
    Returns:
      A batched one-hot tensor.
    """
    with ops.name_scope(name, "Hardmax", [logits]):
        logits = ops.convert_to_tensor(logits, name="logits")
        if logits.get_shape()[-1].value is not None:
            depth = logits.get_shape()[-1].value
        else:
            depth = array_ops.shape(logits)[-1]
        return array_ops.one_hot(
            math_ops.argmax(logits, -1), depth, dtype=logits.dtype) 
開發者ID:HareeshBahuleyan,項目名稱:tf-var-attention,代碼行數:21,代碼來源:attention_wrapper.py

示例10: focal_loss

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def focal_loss(labels, logits, gamma=2.0):
    r"""
    Multi-class focal loss implementation: https://arxiv.org/abs/1708.02002
    :param labels: [batch_size, ] - Tensor of the correct class ids
    :param logits: [batch_size, num_classes] - Unscaled logits
    :param gamma: focal loss weight
    :return: [batch_size, ] - Tensor of average costs for each batch element
    """

    num_classes = array_ops.shape(logits)[1]
    onehot_labels = array_ops.one_hot(labels, num_classes, dtype=logits.dtype)

    p = nn_ops.softmax(logits)
    p = clip_ops.clip_by_value(p, 1e-7, 1.0 - 1e-7)

    f_loss = - onehot_labels * math_ops.pow(1.0 - p, gamma) * math_ops.log(p) \
             - (1 - onehot_labels) * math_ops.pow(p, gamma) * math_ops.log(1.0 - p)

    cost = math_ops.reduce_sum(f_loss, axis=1)
    return cost 
開發者ID:georgesterpu,項目名稱:avsr-tf1,代碼行數:22,代碼來源:devel.py

示例11: mc_loss

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def mc_loss(labels, logits):
    r"""
    A multi-class cross-entropy loss
    :param labels: [batch_size, ] - Tensor of the correct class ids
    :param logits: [batch_size, num_classes] - Unscaled logits
    :return: [batch_size, ] - Tensor of average costs for each batch element
    """

    num_classes = array_ops.shape(logits)[1]
    onehot_labels = array_ops.one_hot(labels, num_classes, dtype=logits.dtype)

    p = nn_ops.softmax(logits)
    p = clip_ops.clip_by_value(p, 1e-7, 1.0 - 1e-7)

    ce_loss = - onehot_labels * math_ops.log(p) - (1 - onehot_labels) * math_ops.log(1.0-p)

    cost = math_ops.reduce_sum(ce_loss, axis=1)
    return cost 
開發者ID:georgesterpu,項目名稱:avsr-tf1,代碼行數:20,代碼來源:devel.py

示例12: initial_alignments

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def initial_alignments(self, batch_size, dtype):
    """Creates the initial alignment values for the monotonic attentions.

    Initializes to dirac distributions, i.e. [1, 0, 0, ...memory length..., 0]
    for all entries in the batch.

    Args:
      batch_size: `int32` scalar, the batch_size.
      dtype: The `dtype`.

    Returns:
      A `dtype` tensor shaped `[batch_size, alignments_size]`
      (`alignments_size` is the values' `max_time`).
    """
    max_time = self._alignments_size
    return array_ops.one_hot(
        array_ops.zeros((batch_size,), dtype=dtypes.int32), max_time,
        dtype=dtype) 
開發者ID:yanghoonkim,項目名稱:NQG_ASs2s,代碼行數:20,代碼來源:attention_wrapper_mod.py

示例13: initial_alignments

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def initial_alignments(self, batch_size, dtype):
    """Creates the initial alignment values for the monotonic attentions.

    Initializes to dirac distributions, i.e. [1, 0, 0, ...memory length..., 0]
    for all entries in the batch.

    Args:
      batch_size: `int32` scalar, the batch_size.
      dtype: The `dtype`.

    Returns:
      A `dtype` tensor shaped `[batch_size, alignments_size]`
      (`alignments_size` is the values' `max_time`).
    """
    max_time = self._alignments_size
    return array_ops.one_hot(
        array_ops.zeros((batch_size,), dtype=dtypes.int32),
        max_time,
        dtype=dtype
    ) 
開發者ID:NVIDIA,項目名稱:OpenSeq2Seq,代碼行數:22,代碼來源:attention_wrapper.py

示例14: hardmax

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def hardmax(logits, name=None):
  """Returns batched one-hot vectors.

  The depth index containing the `1` is that of the maximum logit value.

  Args:
    logits: A batch tensor of logit values.
    name: Name to use when creating ops.
  Returns:
    A batched one-hot tensor.
  """
  with ops.name_scope(name, "Hardmax", [logits]):
    logits = ops.convert_to_tensor(logits, name="logits")
    if logits.get_shape()[-1].value is not None:
      depth = logits.get_shape()[-1].value
    else:
      depth = array_ops.shape(logits)[-1]
    return array_ops.one_hot(
        math_ops.argmax(logits, -1), depth, dtype=logits.dtype
    ) 
開發者ID:NVIDIA,項目名稱:OpenSeq2Seq,代碼行數:22,代碼來源:attention_wrapper.py

示例15: _get_eval_ops

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import one_hot [as 別名]
def _get_eval_ops(self, features, targets, metrics):
    features, spec = data_ops.ParseDataTensorOrDict(features)
    labels = data_ops.ParseLabelTensorOrDict(targets)

    graph_builder = self.graph_builder_class(
        self.params, device_assigner=self.device_assigner, training=False,
        **self.construction_args)

    probabilities = graph_builder.inference_graph(features, data_spec=spec)

    # One-hot the labels.
    if not self.params.regression:
      labels = math_ops.to_int64(array_ops.one_hot(math_ops.to_int64(
          array_ops.squeeze(labels)), self.params.num_classes, 1, 0))

    if metrics is None:
      metrics = {self.accuracy_metric:
                 eval_metrics.get_metric(self.accuracy_metric)}

    result = {}
    for name, metric in six.iteritems(metrics):
      result[name] = metric(probabilities, labels)

    return result 
開發者ID:lbkchen,項目名稱:deep-learning,代碼行數:26,代碼來源:rf3.py


注:本文中的tensorflow.python.ops.array_ops.one_hot方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。