本文整理匯總了Python中tensorflow.python.ops.array_ops.matrix_transpose方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.matrix_transpose方法的具體用法?Python array_ops.matrix_transpose怎麽用?Python array_ops.matrix_transpose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.matrix_transpose方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _CholeskyGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_transpose [as 別名]
def _CholeskyGrad(op, grad):
"""Gradient for Cholesky."""
# Gradient is l^{-H} @ ((l^{H} @ grad) * (tril(ones)-1/2*eye)) @ l^{-1}
l = op.outputs[0]
num_rows = array_ops.shape(l)[-1]
batch_shape = array_ops.shape(l)[:-2]
l_inverse = linalg_ops.matrix_triangular_solve(l,
linalg_ops.eye(
num_rows,
batch_shape=batch_shape,
dtype=l.dtype))
middle = math_ops.matmul(l, grad, adjoint_a=True)
middle = array_ops.matrix_set_diag(middle,
0.5 * array_ops.matrix_diag_part(middle))
middle = array_ops.matrix_band_part(middle, -1, 0)
grad_a = math_ops.matmul(
math_ops.matmul(l_inverse, middle, adjoint_a=True), l_inverse)
grad_a += math_ops.conj(array_ops.matrix_transpose(grad_a))
return grad_a * 0.5
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:25,代碼來源:linalg_grad.py
示例2: assert_symmetric
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_transpose [as 別名]
def assert_symmetric(matrix):
matrix_t = array_ops.matrix_transpose(matrix)
return control_flow_ops.with_dependencies(
[check_ops.assert_equal(matrix, matrix_t)], matrix)
示例3: _SelfAdjointEigV2Grad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_transpose [as 別名]
def _SelfAdjointEigV2Grad(op, grad_e, grad_v):
"""Gradient for SelfAdjointEigV2."""
e = op.outputs[0]
v = op.outputs[1]
# a = op.inputs[0], which satisfies
# a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i]
with ops.control_dependencies([grad_e.op, grad_v.op]):
if grad_v is not None:
# Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0).
# Notice that because of the term involving f, the gradient becomes
# infinite (or NaN in practice) when eigenvalues are not unique.
# Mathematically this should not be surprising, since for (k-fold)
# degenerate eigenvalues, the corresponding eigenvectors are only defined
# up to arbitrary rotation in a (k-dimensional) subspace.
f = array_ops.matrix_set_diag(
math_ops.reciprocal(
array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)),
array_ops.zeros_like(e))
grad_a = math_ops.matmul(
v,
math_ops.matmul(
array_ops.matrix_diag(grad_e) + f * math_ops.matmul(
v, grad_v, adjoint_a=True),
v,
adjoint_b=True))
else:
grad_a = math_ops.matmul(
v, math_ops.matmul(
array_ops.matrix_diag(grad_e), v, adjoint_b=True))
# The forward op only depends on the lower triangular part of a, so here we
# symmetrize and take the lower triangle
grad_a = array_ops.matrix_band_part(
grad_a + array_ops.matrix_transpose(grad_a), -1, 0)
grad_a = array_ops.matrix_set_diag(grad_a,
0.5 * array_ops.matrix_diag_part(grad_a))
return grad_a
示例4: _batch_matmul
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_transpose [as 別名]
def _batch_matmul(self, x, transpose_x=False):
if transpose_x:
x = array_ops.matrix_transpose(x)
self._check_x(x)
return self._scale * x
示例5: _batch_sqrt_matmul
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_transpose [as 別名]
def _batch_sqrt_matmul(self, x, transpose_x=False):
if transpose_x:
x = array_ops.matrix_transpose(x)
self._check_x(x)
return math_ops.sqrt(self._scale) * x
示例6: _batch_matmul
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_transpose [as 別名]
def _batch_matmul(self, x, transpose_x=False):
if transpose_x:
x = array_ops.matrix_transpose(x)
diag_mat = array_ops.expand_dims(self._diag, -1)
return diag_mat * x
示例7: _batch_sqrt_matmul
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_transpose [as 別名]
def _batch_sqrt_matmul(self, x, transpose_x=False):
if transpose_x:
x = array_ops.matrix_transpose(x)
diag_mat = array_ops.expand_dims(self._diag, -1)
return diag_mat * x
示例8: _SelfAdjointEigV2Grad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_transpose [as 別名]
def _SelfAdjointEigV2Grad(op, grad_e, grad_v):
"""Gradient for SelfAdjointEigV2."""
e = op.outputs[0]
v = op.outputs[1]
# a = op.inputs[0], which satisfies
# a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i]
with ops.control_dependencies([grad_e.op, grad_v.op]):
if grad_v is not None:
# Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0).
# Notice that because of the term involving f, the gradient becomes
# infinite (or NaN in practice) when eigenvalues are not unique.
# Mathematically this should not be surprising, since for (k-fold)
# degenerate eigenvalues, the corresponding eigenvectors are only defined
# up to arbitrary rotation in a (k-dimensional) subspace.
f = array_ops.matrix_set_diag(
math_ops.inv(
array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)),
array_ops.zeros_like(e))
grad_a = math_ops.batch_matmul(
v,
math_ops.batch_matmul(
array_ops.matrix_diag(grad_e) + f * math_ops.batch_matmul(
v, grad_v, adj_x=True),
v,
adj_y=True))
else:
grad_a = math_ops.batch_matmul(
v,
math_ops.batch_matmul(
array_ops.matrix_diag(grad_e), v, adj_y=True))
# The forward op only depends on the lower triangular part of a, so here we
# symmetrize and take the lower triangle
grad_a = array_ops.matrix_band_part(
grad_a + array_ops.matrix_transpose(grad_a), -1, 0)
grad_a = array_ops.matrix_set_diag(grad_a,
0.5 * array_ops.matrix_diag_part(grad_a))
return grad_a
示例9: _batch_matmul
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_transpose [as 別名]
def _batch_matmul(self, x, transpose_x=False):
if transpose_x:
x = array_ops.matrix_transpose(x)
self._check_x(x)
return x
示例10: _batch_sqrt_matmul
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_transpose [as 別名]
def _batch_sqrt_matmul(self, x, transpose_x=False):
if transpose_x:
x = array_ops.matrix_transpose(x)
diag_mat = array_ops.expand_dims(self._diag, -1)
return math_ops.sqrt(diag_mat) * x
示例11: __call__
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_transpose [as 別名]
def __call__(self, shape, dtype=None, partition_info=None):
if dtype is None:
dtype = self.dtype
# Check the shape
if len(shape) < 2:
raise ValueError("The tensor to initialize must be "
"at least two-dimensional")
# Flatten the input shape with the last dimension remaining
# its original shape so it works for conv2d
num_rows = 1
for dim in shape[:-1]:
num_rows *= dim
num_cols = shape[-1]
flat_shape = (num_cols, num_rows) if num_rows < num_cols else (num_rows,
num_cols)
# Generate a random matrix
a = random_ops.random_normal(flat_shape, dtype=dtype, seed=self.seed)
# Compute the qr factorization
q, r = linalg_ops.qr(a, full_matrices=False)
# Make Q uniform
d = array_ops.diag_part(r)
ph = d / math_ops.abs(d)
q *= ph
if num_rows < num_cols:
q = array_ops.matrix_transpose(q)
return self.gain * array_ops.reshape(q, shape)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:29,代碼來源:init_ops.py
示例12: _SelfAdjointEigV2Grad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_transpose [as 別名]
def _SelfAdjointEigV2Grad(op, grad_e, grad_v):
"""Gradient for SelfAdjointEigV2."""
e = op.outputs[0]
compute_v = op.get_attr("compute_v")
# a = op.inputs[0], which satisfies
# a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i]
with ops.control_dependencies([grad_e, grad_v]):
if compute_v:
v = op.outputs[1]
# Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0).
# Notice that because of the term involving f, the gradient becomes
# infinite (or NaN in practice) when eigenvalues are not unique.
# Mathematically this should not be surprising, since for (k-fold)
# degenerate eigenvalues, the corresponding eigenvectors are only defined
# up to arbitrary rotation in a (k-dimensional) subspace.
f = array_ops.matrix_set_diag(
math_ops.reciprocal(
array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)),
array_ops.zeros_like(e))
grad_a = math_ops.matmul(
v,
math_ops.matmul(
array_ops.matrix_diag(grad_e) +
f * math_ops.matmul(v, grad_v, adjoint_a=True),
v,
adjoint_b=True))
else:
_, v = linalg_ops.self_adjoint_eig(op.inputs[0])
grad_a = math_ops.matmul(v,
math_ops.matmul(
array_ops.matrix_diag(grad_e),
v,
adjoint_b=True))
# The forward op only depends on the lower triangular part of a, so here we
# symmetrize and take the lower triangle
grad_a = array_ops.matrix_band_part(
grad_a + math_ops.conj(array_ops.matrix_transpose(grad_a)), -1, 0)
grad_a = array_ops.matrix_set_diag(grad_a,
0.5 * array_ops.matrix_diag_part(grad_a))
return grad_a
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:42,代碼來源:linalg_grad.py