當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.matrix_diag方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.matrix_diag方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.matrix_diag方法的具體用法?Python array_ops.matrix_diag怎麽用?Python array_ops.matrix_diag使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.matrix_diag方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _MatrixDiagPartGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag [as 別名]
def _MatrixDiagPartGrad(op, grad):
  matrix_shape = op.inputs[0].get_shape()[-2:]
  if matrix_shape.is_fully_defined() and matrix_shape[0] == matrix_shape[1]:
    return array_ops.matrix_diag(grad)
  else:
    return array_ops.matrix_set_diag(array_ops.zeros_like(op.inputs[0]), grad) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:8,代碼來源:array_grad.py

示例2: _SelfAdjointEigV2Grad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag [as 別名]
def _SelfAdjointEigV2Grad(op, grad_e, grad_v):
  """Gradient for SelfAdjointEigV2."""
  e = op.outputs[0]
  v = op.outputs[1]
  # a = op.inputs[0], which satisfies
  # a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i]
  with ops.control_dependencies([grad_e.op, grad_v.op]):
    if grad_v is not None:
      # Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0).
      # Notice that because of the term involving f, the gradient becomes
      # infinite (or NaN in practice) when eigenvalues are not unique.
      # Mathematically this should not be surprising, since for (k-fold)
      # degenerate eigenvalues, the corresponding eigenvectors are only defined
      # up to arbitrary rotation in a (k-dimensional) subspace.
      f = array_ops.matrix_set_diag(
          math_ops.reciprocal(
              array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)),
          array_ops.zeros_like(e))
      grad_a = math_ops.matmul(
          v,
          math_ops.matmul(
              array_ops.matrix_diag(grad_e) + f * math_ops.matmul(
                  v, grad_v, adjoint_a=True),
              v,
              adjoint_b=True))
    else:
      grad_a = math_ops.matmul(
          v, math_ops.matmul(
              array_ops.matrix_diag(grad_e), v, adjoint_b=True))
    # The forward op only depends on the lower triangular part of a, so here we
    # symmetrize and take the lower triangle
    grad_a = array_ops.matrix_band_part(
        grad_a + array_ops.matrix_transpose(grad_a), -1, 0)
    grad_a = array_ops.matrix_set_diag(grad_a,
                                       0.5 * array_ops.matrix_diag_part(grad_a))
    return grad_a 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:linalg_grad.py

示例3: _to_dense

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag [as 別名]
def _to_dense(self):
    diag = array_ops.ones(self.vector_shape(), dtype=self.dtype)
    dense = array_ops.matrix_diag(diag)
    dense.set_shape(self.get_shape())
    return self._scale * dense 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:7,代碼來源:operator_pd_identity.py

示例4: _sqrt_to_dense

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag [as 別名]
def _sqrt_to_dense(self):
    diag = array_ops.ones(self.vector_shape(), dtype=self.dtype)
    dense = array_ops.matrix_diag(diag)
    dense.set_shape(self.get_shape())
    return math_ops.sqrt(self._scale) * dense 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:7,代碼來源:operator_pd_identity.py

示例5: _covariance

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag [as 別名]
def _covariance(self):
    if distribution_util.is_diagonal_scale(self.scale):
      return array_ops.matrix_diag(math_ops.square(self.scale.diag_part()))
    else:
      return self.scale.matmul(self.scale.to_dense(), adjoint_arg=True) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:7,代碼來源:mvn_linear_operator.py

示例6: _to_dense

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag [as 別名]
def _to_dense(self):
    return array_ops.matrix_diag(self._diag) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:operator_pd_diag.py

示例7: _sqrt_to_dense

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag [as 別名]
def _sqrt_to_dense(self):
    return array_ops.matrix_diag(math_ops.sqrt(self._diag)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:operator_pd_diag.py

示例8: _to_dense

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag [as 別名]
def _to_dense(self):
    return array_ops.matrix_diag(math_ops.square(self._diag)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:4,代碼來源:operator_pd_diag.py

示例9: _SelfAdjointEigV2Grad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag [as 別名]
def _SelfAdjointEigV2Grad(op, grad_e, grad_v):
  """Gradient for SelfAdjointEigV2."""
  e = op.outputs[0]
  v = op.outputs[1]
  # a = op.inputs[0], which satisfies
  # a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i]
  with ops.control_dependencies([grad_e.op, grad_v.op]):
    if grad_v is not None:
      # Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0).
      # Notice that because of the term involving f, the gradient becomes
      # infinite (or NaN in practice) when eigenvalues are not unique.
      # Mathematically this should not be surprising, since for (k-fold)
      # degenerate eigenvalues, the corresponding eigenvectors are only defined
      # up to arbitrary rotation in a (k-dimensional) subspace.
      f = array_ops.matrix_set_diag(
          math_ops.inv(
              array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)),
          array_ops.zeros_like(e))
      grad_a = math_ops.batch_matmul(
          v,
          math_ops.batch_matmul(
              array_ops.matrix_diag(grad_e) + f * math_ops.batch_matmul(
                  v, grad_v, adj_x=True),
              v,
              adj_y=True))
    else:
      grad_a = math_ops.batch_matmul(
          v,
          math_ops.batch_matmul(
              array_ops.matrix_diag(grad_e), v, adj_y=True))
    # The forward op only depends on the lower triangular part of a, so here we
    # symmetrize and take the lower triangle
    grad_a = array_ops.matrix_band_part(
        grad_a + array_ops.matrix_transpose(grad_a), -1, 0)
    grad_a = array_ops.matrix_set_diag(grad_a,
                                       0.5 * array_ops.matrix_diag_part(grad_a))
    return grad_a 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:39,代碼來源:linalg_grad.py

示例10: _to_dense

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag [as 別名]
def _to_dense(self):
    diag = array_ops.ones(self.vector_shape(), dtype=self.dtype)
    dense = array_ops.matrix_diag(diag)
    dense.set_shape(self.get_shape())
    return dense 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:7,代碼來源:operator_pd_identity.py

示例11: _sqrt_to_dense

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag [as 別名]
def _sqrt_to_dense(self):
    return array_ops.matrix_diag(self._diag) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:4,代碼來源:operator_pd_diag.py

示例12: _SelfAdjointEigV2Grad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import matrix_diag [as 別名]
def _SelfAdjointEigV2Grad(op, grad_e, grad_v):
  """Gradient for SelfAdjointEigV2."""
  e = op.outputs[0]
  compute_v = op.get_attr("compute_v")
  # a = op.inputs[0], which satisfies
  # a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i]
  with ops.control_dependencies([grad_e, grad_v]):
    if compute_v:
      v = op.outputs[1]
      # Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0).
      # Notice that because of the term involving f, the gradient becomes
      # infinite (or NaN in practice) when eigenvalues are not unique.
      # Mathematically this should not be surprising, since for (k-fold)
      # degenerate eigenvalues, the corresponding eigenvectors are only defined
      # up to arbitrary rotation in a (k-dimensional) subspace.
      f = array_ops.matrix_set_diag(
          math_ops.reciprocal(
              array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)),
          array_ops.zeros_like(e))
      grad_a = math_ops.matmul(
          v,
          math_ops.matmul(
              array_ops.matrix_diag(grad_e) +
              f * math_ops.matmul(v, grad_v, adjoint_a=True),
              v,
              adjoint_b=True))
    else:
      _, v = linalg_ops.self_adjoint_eig(op.inputs[0])
      grad_a = math_ops.matmul(v,
                               math_ops.matmul(
                                   array_ops.matrix_diag(grad_e),
                                   v,
                                   adjoint_b=True))
    # The forward op only depends on the lower triangular part of a, so here we
    # symmetrize and take the lower triangle
    grad_a = array_ops.matrix_band_part(
        grad_a + math_ops.conj(array_ops.matrix_transpose(grad_a)), -1, 0)
    grad_a = array_ops.matrix_set_diag(grad_a,
                                       0.5 * array_ops.matrix_diag_part(grad_a))
    return grad_a 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:42,代碼來源:linalg_grad.py


注:本文中的tensorflow.python.ops.array_ops.matrix_diag方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。