本文整理匯總了Python中tensorflow.python.ops.array_ops.gather_nd方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.gather_nd方法的具體用法?Python array_ops.gather_nd怎麽用?Python array_ops.gather_nd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.gather_nd方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: scheduled_sampling
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import gather_nd [as 別名]
def scheduled_sampling(self, batch_size, sampling_probability, true, estimate):
with variable_scope.variable_scope("ScheduledEmbedding"):
# Return -1s where we do not sample, and sample_ids elsewhere
select_sampler = bernoulli.Bernoulli(probs=sampling_probability, dtype=tf.bool)
select_sample = select_sampler.sample(sample_shape=batch_size)
sample_ids = array_ops.where(
select_sample,
tf.range(batch_size),
gen_array_ops.fill([batch_size], -1))
where_sampling = math_ops.cast(
array_ops.where(sample_ids > -1), tf.int32)
where_not_sampling = math_ops.cast(
array_ops.where(sample_ids <= -1), tf.int32)
_estimate = array_ops.gather_nd(estimate, where_sampling)
_true = array_ops.gather_nd(true, where_not_sampling)
base_shape = array_ops.shape(true)
result1 = array_ops.scatter_nd(indices=where_sampling, updates=_estimate, shape=base_shape)
result2 = array_ops.scatter_nd(indices=where_not_sampling, updates=_true, shape=base_shape)
result = result1 + result2
return result1 + result2
示例2: dense_to_sparse
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import gather_nd [as 別名]
def dense_to_sparse(tensor, eos_token=0, outputs_collections=None, scope=None):
"""Converts a dense tensor into a sparse tensor.
An example use would be to convert dense labels to sparse ones
so that they can be fed to the ctc_loss.
Args:
tensor: An `int` `Tensor` to be converted to a `Sparse`.
eos_token: An integer. It is part of the target label that signifies the
end of a sentence.
outputs_collections: Collection to add the outputs.
scope: Optional scope for name_scope.
"""
with variable_scope.variable_scope(scope, 'dense_to_sparse', [tensor]) as sc:
tensor = ops.convert_to_tensor(tensor)
indices = array_ops.where(
math_ops.not_equal(tensor, constant_op.constant(eos_token,
tensor.dtype)))
values = array_ops.gather_nd(tensor, indices)
shape = array_ops.shape(tensor, out_type=dtypes.int64)
outputs = sparse_tensor.SparseTensor(indices, values, shape)
return utils.collect_named_outputs(outputs_collections, sc.name, outputs)
示例3: dense_to_sparse_tensor
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import gather_nd [as 別名]
def dense_to_sparse_tensor(dense_tensor, ignore_value=None):
"""Converts dense `Tensor` to `SparseTensor`, dropping `ignore_value` cells.
Args:
dense_tensor: A `Tensor`.
ignore_value: Entries in `dense_tensor` equal to this value will be
absent from the return `SparseTensor`. If `None`, default value of
`dense_tensor` dtype will be used (e.g. '' for `str`, 0 for `int`).
Returns:
A `SparseTensor` with the same shape as `dense_tensor`.
Raises:
ValueError: when `dense_tensor`'s rank is `None`.
"""
with ops.name_scope("DenseToSparseTensor"):
dense_tensor = ops.convert_to_tensor(dense_tensor)
ignore_value = _ignore_value_tensor(dense_tensor.dtype, ignore_value)
indices = array_ops.where(
math_ops.not_equal(dense_tensor, ignore_value), name="indices")
return sparse_tensor.SparseTensor(
indices=indices,
values=array_ops.gather_nd(dense_tensor, indices, name="values"),
dense_shape=array_ops.shape(
dense_tensor, out_type=dtypes.int64, name="dense_shape"))
示例4: _SparseTensorDenseAddGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import gather_nd [as 別名]
def _SparseTensorDenseAddGrad(op, out_grad):
sp_indices = op.inputs[0]
# (sparse_indices, sparse_values, sparse_shape, dense)
return (None, array_ops.gather_nd(out_grad, sp_indices), None, out_grad)
示例5: _SparseReduceSumGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import gather_nd [as 別名]
def _SparseReduceSumGrad(op, out_grad):
"""Similar to gradient for the Sum Op (i.e. tf.reduce_sum())."""
sp_indices = op.inputs[0]
sp_shape = op.inputs[2]
output_shape_kept_dims = math_ops.reduced_shape(sp_shape, op.inputs[3])
out_grad_reshaped = array_ops.reshape(out_grad, output_shape_kept_dims)
scale = sp_shape // math_ops.to_int64(output_shape_kept_dims)
# (sparse_indices, sparse_values, sparse_shape, reduction_axes)
return (None, array_ops.gather_nd(out_grad_reshaped, sp_indices // scale),
None, None)
示例6: _SparseDenseCwiseMulOrDivGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import gather_nd [as 別名]
def _SparseDenseCwiseMulOrDivGrad(op, grad, is_mul):
"""Common code for SparseDenseCwise{Mul,Div} gradients."""
x_indices = op.inputs[0]
x_shape = op.inputs[2]
y = op.inputs[3]
y_shape = math_ops.to_int64(array_ops.shape(y))
num_added_dims = array_ops.expand_dims(
array_ops.size(x_shape) - array_ops.size(y_shape), 0)
augmented_y_shape = array_ops.concat(
[array_ops.ones(num_added_dims, ops.dtypes.int64), y_shape], 0)
scaling = x_shape // augmented_y_shape
scaled_indices = x_indices // scaling
scaled_indices = array_ops.slice(scaled_indices,
array_ops.concat([[0], num_added_dims], 0),
[-1, -1])
dense_vals = array_ops.gather_nd(y, scaled_indices)
if is_mul:
dx = grad * dense_vals
dy_val = grad * op.inputs[1]
else:
dx = grad / dense_vals
dy_val = grad * (-op.inputs[1] / math_ops.square(dense_vals))
# indices can repeat after scaling, so we can't use sparse_to_dense().
dy = sparse_ops.sparse_add(
array_ops.zeros_like(y),
sparse_tensor.SparseTensor(scaled_indices, dy_val, y_shape))
# (sp_indices, sp_vals, sp_shape, dense)
return (None, dx, None, dy)
示例7: _ScatterNdGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import gather_nd [as 別名]
def _ScatterNdGrad(op, grad):
indices = op.inputs[0]
updates_grad = array_ops.gather_nd(grad, indices)
return [None, updates_grad, None]
示例8: _define_distance_to_clusters
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import gather_nd [as 別名]
def _define_distance_to_clusters(self, data):
"""Defines the Mahalanobis distance to the assigned Gaussian."""
# TODO(xavigonzalvo): reuse (input - mean) * cov^-1 * (input -
# mean) from log probability function.
self._all_scores = []
for shard in data:
all_scores = []
shard = array_ops.expand_dims(shard, 0)
for c in xrange(self._num_classes):
if self._covariance_type == FULL_COVARIANCE:
cov = self._covs[c, :, :]
elif self._covariance_type == DIAG_COVARIANCE:
cov = array_ops.diag(self._covs[c, :])
inverse = linalg_ops.matrix_inverse(cov + self._min_var)
inv_cov = array_ops.tile(
array_ops.expand_dims(inverse, 0),
array_ops.stack([self._num_examples, 1, 1]))
diff = array_ops.transpose(shard - self._means[c, :, :], perm=[1, 0, 2])
m_left = math_ops.matmul(diff, inv_cov)
all_scores.append(
math_ops.sqrt(
math_ops.matmul(
m_left, array_ops.transpose(
diff, perm=[0, 2, 1]))))
self._all_scores.append(
array_ops.reshape(
array_ops.concat(all_scores, 1),
array_ops.stack([self._num_examples, self._num_classes])))
# Distance to the associated class.
self._all_scores = array_ops.concat(self._all_scores, 0)
assignments = array_ops.concat(self.assignments(), 0)
rows = math_ops.to_int64(math_ops.range(0, self._num_examples))
indices = array_ops.concat(
[array_ops.expand_dims(rows, 1), array_ops.expand_dims(assignments, 1)],
1)
self._scores = array_ops.gather_nd(self._all_scores, indices)
示例9: _SparseDenseCwiseMulOrDivGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import gather_nd [as 別名]
def _SparseDenseCwiseMulOrDivGrad(op, grad, is_mul):
"""Common code for SparseDenseCwise{Mul,Div} gradients."""
x_indices = op.inputs[0]
x_shape = op.inputs[2]
y = op.inputs[3]
y_shape = math_ops.to_int64(array_ops.shape(y))
num_added_dims = array_ops.expand_dims(
array_ops.size(x_shape) - array_ops.size(y_shape), 0)
augmented_y_shape = array_ops.concat(0, [array_ops.ones(num_added_dims,
ops.dtypes.int64),
y_shape])
scaling = x_shape // augmented_y_shape
scaled_indices = x_indices // scaling
scaled_indices = array_ops.slice(scaled_indices,
array_ops.concat(0, [[0], num_added_dims]),
[-1, -1])
dense_vals = array_ops.gather_nd(y, scaled_indices)
if is_mul:
dx = grad * dense_vals
dy_val = grad * op.inputs[1]
else:
dx = grad / dense_vals
dy_val = grad * (-op.inputs[1] / math_ops.square(dense_vals))
# indices can repeat after scaling, so we can't use sparse_to_dense().
dy = sparse_ops.sparse_add(
array_ops.zeros_like(y),
sparse_tensor.SparseTensor(scaled_indices, dy_val, y_shape))
# (sp_indices, sp_vals, sp_shape, dense)
return (None, dx, None, dy)
示例10: next_inputs
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import gather_nd [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperNextInputs",
[time, outputs, state, sample_ids]):
(finished, base_next_inputs, state) = (
super(ScheduledEmbeddingTrainingHelper, self).next_inputs(
time=time,
outputs=outputs,
state=state,
sample_ids=sample_ids,
name=name))
def maybe_sample():
"""Perform scheduled sampling."""
where_sampling = math_ops.cast(
array_ops.where(sample_ids > -1), dtypes.int32)
where_not_sampling = math_ops.cast(
array_ops.where(sample_ids <= -1), dtypes.int32)
sample_ids_sampling = array_ops.gather_nd(sample_ids, where_sampling)
inputs_not_sampling = array_ops.gather_nd(
base_next_inputs, where_not_sampling)
sampled_next_inputs = self._embedding_fn(sample_ids_sampling)
base_shape = array_ops.shape(base_next_inputs)
return (array_ops.scatter_nd(indices=where_sampling,
updates=sampled_next_inputs,
shape=base_shape)
+ array_ops.scatter_nd(indices=where_not_sampling,
updates=inputs_not_sampling,
shape=base_shape))
all_finished = math_ops.reduce_all(finished)
next_inputs = control_flow_ops.cond(
all_finished, lambda: base_next_inputs, maybe_sample)
return (finished, next_inputs, state)
示例11: next_inputs
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import gather_nd [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
"""Gets the outputs for next step."""
with ops.name_scope(name, "ScheduledEmbeddingTrainingHelperNextInputs",
[time, outputs, state, sample_ids]):
(finished, base_next_inputs, state) = (
super(ScheduledEmbeddingTrainingHelper, self).next_inputs(
time=time,
outputs=outputs,
state=state,
sample_ids=sample_ids,
name=name))
def maybe_sample():
"""Perform scheduled sampling."""
where_sampling = math_ops.cast(
array_ops.where(sample_ids > -1), dtypes.int32)
where_not_sampling = math_ops.cast(
array_ops.where(sample_ids <= -1), dtypes.int32)
sample_ids_sampling = array_ops.gather_nd(sample_ids, where_sampling)
inputs_not_sampling = array_ops.gather_nd(
base_next_inputs, where_not_sampling)
if self._embedding_args_cnt == 1:
sampled_next_inputs = self._embedding_fn(
sample_ids_sampling)
elif self._embedding_args_cnt == 2:
# Prepare the position embedding of the next step
times = tf.ones(self._batch_size, dtype=tf.int32) * (time+1)
sampled_next_inputs = self._embedding_fn(
sample_ids_sampling, times)
base_shape = array_ops.shape(base_next_inputs)
return (array_ops.scatter_nd(indices=where_sampling,
updates=sampled_next_inputs,
shape=base_shape)
+ array_ops.scatter_nd(indices=where_not_sampling,
updates=inputs_not_sampling,
shape=base_shape))
all_finished = math_ops.reduce_all(finished)
next_inputs = control_flow_ops.cond(
all_finished, lambda: base_next_inputs, maybe_sample)
return (finished, next_inputs, state)