本文整理匯總了Python中tensorflow.python.ops.array_ops.expand_dims方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.expand_dims方法的具體用法?Python array_ops.expand_dims怎麽用?Python array_ops.expand_dims使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.expand_dims方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _GatherGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _GatherGrad(op, grad):
"""Gradient for gather op."""
# Build appropriately shaped IndexedSlices
# Walk graph back until the original handle is found.
# TODO(apassos): more robust way of getting the shape.
handle = op.inputs[0]
while handle.op.type != "VarHandleOp":
handle = handle.op.inputs[0]
params_shape = ops.convert_to_tensor(
tensor_shape.TensorShape(handle.op.get_attr("shape")))
indices = op.inputs[1]
size = array_ops.expand_dims(array_ops.size(indices), 0)
values_shape = array_ops.concat([size, params_shape[1:]], 0)
values = array_ops.reshape(grad, values_shape)
indices = array_ops.reshape(indices, size)
return [ops.IndexedSlices(values, indices, params_shape), None]
示例2: call
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def call(self, inputs):
# There is no TF op for 1D pooling, hence we make the inputs 4D.
if self.data_format == 'channels_last':
inputs = array_ops.expand_dims(inputs, 2)
pool_shape = (1,) + self.pool_size + (1, 1)
strides = (1,) + self.strides + (1, 1)
data_format = 'NHWC'
else:
inputs = array_ops.expand_dims(inputs, 1)
pool_shape = (1, 1) + self.pool_size + (1,)
strides = (1, 1) + self.strides + (1,)
data_format = 'NCHW'
outputs = self.pool_function(
inputs,
ksize=pool_shape,
strides=strides,
padding=self.padding.upper(),
data_format=data_format)
if self.data_format == 'channels_last':
return array_ops.squeeze(outputs, 2)
else:
return array_ops.squeeze(outputs, 1)
示例3: tensors_to_item
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def tensors_to_item(self, keys_to_tensors):
"""Maps the given dictionary of tensors to a contatenated list of bboxes.
Args:
keys_to_tensors: a mapping of TF-Example keys to parsed tensors.
Returns:
[num_boxes, 4] tensor of bounding box coordinates,
i.e. 1 bounding box per row, in order [y_min, x_min, y_max, x_max].
"""
sides = []
for key in self._full_keys:
side = array_ops.expand_dims(keys_to_tensors[key].values, 0)
sides.append(side)
bounding_box = array_ops.concat(sides, 0)
return array_ops.transpose(bounding_box)
示例4: _define_diag_covariance_probs
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _define_diag_covariance_probs(self, shard_id, shard):
"""Defines the diagonal covariance probabilities per example in a class.
Args:
shard_id: id of the current shard.
shard: current data shard, 1 X num_examples X dimensions.
Returns a matrix num_examples * num_classes.
"""
# num_classes X 1
# TODO(xavigonzalvo): look into alternatives to log for
# reparametrization of variance parameters.
det_expanded = math_ops.reduce_sum(
math_ops.log(self._covs + 1e-3), 1, keep_dims=True)
diff = shard - self._means
x2 = math_ops.square(diff)
cov_expanded = array_ops.expand_dims(1.0 / (self._covs + 1e-3), 2)
# num_classes X num_examples
x2_cov = math_ops.matmul(x2, cov_expanded)
x2_cov = array_ops.transpose(array_ops.squeeze(x2_cov, [2]))
self._probs[shard_id] = -0.5 * (
math_ops.to_float(self._dimensions) * math_ops.log(2.0 * np.pi) +
array_ops.transpose(det_expanded) + x2_cov)
示例5: _define_partial_maximization_operation
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _define_partial_maximization_operation(self, shard_id, shard):
"""Computes the partial statistics of the means and covariances.
Args:
shard_id: current shard id.
shard: current data shard, 1 X num_examples X dimensions.
"""
# Soft assignment of each data point to each of the two clusters.
self._points_in_k[shard_id] = math_ops.reduce_sum(
self._w[shard_id], 0, keep_dims=True)
# Partial means.
w_mul_x = array_ops.expand_dims(
math_ops.matmul(
self._w[shard_id], array_ops.squeeze(shard, [0]), transpose_a=True),
1)
self._w_mul_x.append(w_mul_x)
# Partial covariances.
x = array_ops.concat([shard for _ in range(self._num_classes)], 0)
x_trans = array_ops.transpose(x, perm=[0, 2, 1])
x_mul_w = array_ops.concat([
array_ops.expand_dims(x_trans[k, :, :] * self._w[shard_id][:, k], 0)
for k in range(self._num_classes)
], 0)
self._w_mul_x2.append(math_ops.matmul(x_mul_w, x))
示例6: repeat
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def repeat(x, n):
"""Repeats a 2D tensor.
if `x` has shape (samples, dim) and `n` is `2`,
the output will have shape `(samples, 2, dim)`.
Arguments:
x: Tensor or variable.
n: Python integer, number of times to repeat.
Returns:
A tensor.
"""
assert ndim(x) == 2
x = array_ops.expand_dims(x, 1)
pattern = array_ops.stack([1, n, 1])
return array_ops.tile(x, pattern)
示例7: _lengths_to_masks
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _lengths_to_masks(lengths, max_length):
"""Creates a binary matrix that can be used to mask away padding.
Args:
lengths: A vector of integers representing lengths.
max_length: An integer indicating the maximum length. All values in
lengths should be less than max_length.
Returns:
masks: Masks that can be used to get rid of padding.
"""
tiled_ranges = array_ops.tile(
array_ops.expand_dims(math_ops.range(max_length), 0),
[array_ops.shape(lengths)[0], 1])
lengths = array_ops.expand_dims(lengths, 1)
masks = math_ops.to_float(
math_ops.to_int64(tiled_ranges) < math_ops.to_int64(lengths))
return masks
示例8: _tile_batch
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _tile_batch(t, multiplier):
"""Core single-tensor implementation of tile_batch."""
t = ops.convert_to_tensor(t, name="t")
shape_t = array_ops.shape(t)
if t.shape.ndims is None or t.shape.ndims < 1:
raise ValueError("t must have statically known rank")
tiling = [1] * (t.shape.ndims + 1)
tiling[1] = multiplier
tiled_static_batch_size = (
t.shape[0].value * multiplier if t.shape[0].value is not None else None)
tiled = array_ops.tile(array_ops.expand_dims(t, 1), tiling)
tiled = array_ops.reshape(
tiled, array_ops.concat(([shape_t[0] * multiplier], shape_t[1:]), 0))
tiled.set_shape(
tensor_shape.TensorShape(
[tiled_static_batch_size]).concatenate(t.shape[1:]))
return tiled
示例9: _linear_predictions
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _linear_predictions(self, examples):
"""Returns predictions of the form w*x."""
with name_scope('sdca/prediction'):
sparse_variables = self._convert_n_to_tensor(self._variables[
'sparse_features_weights'])
result = 0.0
for sfc, sv in zip(examples['sparse_features'], sparse_variables):
# TODO(sibyl-Aix6ihai): following does not take care of missing features.
result += math_ops.segment_sum(
math_ops.multiply(
array_ops.gather(sv, sfc.feature_indices), sfc.feature_values),
sfc.example_indices)
dense_features = self._convert_n_to_tensor(examples['dense_features'])
dense_variables = self._convert_n_to_tensor(self._variables[
'dense_features_weights'])
for i in range(len(dense_variables)):
result += math_ops.matmul(dense_features[i],
array_ops.expand_dims(dense_variables[i], -1))
# Reshaping to allow shape inference at graph construction time.
return array_ops.reshape(result, [-1])
示例10: _softmax_cross_entropy_loss
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _softmax_cross_entropy_loss(labels, logits, weights=None):
with ops.name_scope(
None, "softmax_cross_entropy_loss", (logits, labels,)) as name:
labels = ops.convert_to_tensor(labels)
# Check that we got integer for classification.
if not labels.dtype.is_integer:
raise ValueError("Labels dtype should be integer "
"Instead got %s." % labels.dtype)
# sparse_softmax_cross_entropy_with_logits requires [batch_size] labels.
is_squeezed_labels = False
# TODO(ptucker): This will break for dynamic shapes.
if len(labels.get_shape()) == 2:
labels = array_ops.squeeze(labels, squeeze_dims=(1,))
is_squeezed_labels = True
loss = nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits, name=name)
# Restore squeezed dimension, if necessary, so loss matches weights shape.
if is_squeezed_labels:
loss = array_ops.expand_dims(loss, axis=(1,))
return _compute_weighted_loss(loss, weights)
示例11: _mean
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _mean(self):
with ops.control_dependencies(self._assertions):
distribution_means = [d.mean() for d in self.components]
cat_probs = self._cat_probs(log_probs=False)
# This was checked to not be None at construction time.
static_event_rank = self.event_shape.ndims
# Expand the rank of x up to static_event_rank times so that
# broadcasting works correctly.
def expand(x):
expanded_x = x
for _ in range(static_event_rank):
expanded_x = array_ops.expand_dims(expanded_x, -1)
return expanded_x
cat_probs = [expand(c_p) for c_p in cat_probs]
partial_means = [
c_p * m for (c_p, m) in zip(cat_probs, distribution_means)
]
# These should all be the same shape by virtue of matching
# batch_shape and event_shape.
return math_ops.add_n(partial_means)
示例12: add_to_tensor
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def add_to_tensor(self, mat, name="add_to_tensor"):
"""Add matrix represented by this operator to `mat`. Equiv to `I + mat`.
Args:
mat: `Tensor` with same `dtype` and shape broadcastable to `self`.
name: A name to give this `Op`.
Returns:
A `Tensor` with broadcast shape and same `dtype` as `self`.
"""
with self._name_scope(name, values=[mat]):
# Shape [B1,...,Bb, 1]
multiplier_vector = array_ops.expand_dims(self.multiplier, -1)
# Shape [C1,...,Cc, M, M]
mat = ops.convert_to_tensor(mat, name="mat")
# Shape [C1,...,Cc, M]
mat_diag = array_ops.matrix_diag_part(mat)
# multiplier_vector broadcasts here.
new_diag = multiplier_vector + mat_diag
return array_ops.matrix_set_diag(mat, new_diag)
示例13: call
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def call(self, inputs):
inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
ndim = self._input_rank
shape = self.gamma.get_shape().as_list()
gamma = array_ops.reshape(self.gamma, (ndim - 2) * [1] + shape)
# Compute normalization pool.
if self.data_format == 'channels_first':
norm_pool = nn.convolution(
math_ops.square(inputs),
gamma,
'VALID',
data_format='NC' + 'DHW' [-(ndim - 2):])
if ndim == 3:
norm_pool = array_ops.expand_dims(norm_pool, 2)
norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
norm_pool = array_ops.squeeze(norm_pool, [2])
elif ndim == 5:
shape = array_ops.shape(norm_pool)
norm_pool = array_ops.reshape(norm_pool, shape[:3] + [-1])
norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
norm_pool = array_ops.reshape(norm_pool, shape)
else: # ndim == 4
norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
else: # channels_last
norm_pool = nn.convolution(math_ops.square(inputs), gamma, 'VALID')
norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NHWC')
norm_pool = math_ops.sqrt(norm_pool)
if self.inverse:
outputs = inputs * norm_pool
else:
outputs = inputs / norm_pool
outputs.set_shape(inputs.get_shape())
return outputs
示例14: _SparseDenseCwiseMulOrDivGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _SparseDenseCwiseMulOrDivGrad(op, grad, is_mul):
"""Common code for SparseDenseCwise{Mul,Div} gradients."""
x_indices = op.inputs[0]
x_shape = op.inputs[2]
y = op.inputs[3]
y_shape = math_ops.to_int64(array_ops.shape(y))
num_added_dims = array_ops.expand_dims(
array_ops.size(x_shape) - array_ops.size(y_shape), 0)
augmented_y_shape = array_ops.concat(
[array_ops.ones(num_added_dims, ops.dtypes.int64), y_shape], 0)
scaling = x_shape // augmented_y_shape
scaled_indices = x_indices // scaling
scaled_indices = array_ops.slice(scaled_indices,
array_ops.concat([[0], num_added_dims], 0),
[-1, -1])
dense_vals = array_ops.gather_nd(y, scaled_indices)
if is_mul:
dx = grad * dense_vals
dy_val = grad * op.inputs[1]
else:
dx = grad / dense_vals
dy_val = grad * (-op.inputs[1] / math_ops.square(dense_vals))
# indices can repeat after scaling, so we can't use sparse_to_dense().
dy = sparse_ops.sparse_add(
array_ops.zeros_like(y),
sparse_tensor.SparseTensor(scaled_indices, dy_val, y_shape))
# (sp_indices, sp_vals, sp_shape, dense)
return (None, dx, None, dy)
示例15: _GatherGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _GatherGrad(op, grad):
"""Gradient for Gather op."""
# params can be large, so colocate the shape calculation with it.
params = op.inputs[0]
with ops.colocate_with(params):
params_shape = array_ops.shape(params)
# Build appropriately shaped IndexedSlices
indices = op.inputs[1]
size = array_ops.expand_dims(array_ops.size(indices), 0)
values_shape = array_ops.concat([size, params_shape[1:]], 0)
values = array_ops.reshape(grad, values_shape)
indices = array_ops.reshape(indices, size)
return [ops.IndexedSlices(values, indices, params_shape), None]