當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.expand_dims方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.expand_dims方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.expand_dims方法的具體用法?Python array_ops.expand_dims怎麽用?Python array_ops.expand_dims使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.expand_dims方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _GatherGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _GatherGrad(op, grad):
  """Gradient for gather op."""
  # Build appropriately shaped IndexedSlices
  # Walk graph back until the original handle is found.
  # TODO(apassos): more robust way of getting the shape.
  handle = op.inputs[0]
  while handle.op.type != "VarHandleOp":
    handle = handle.op.inputs[0]
  params_shape = ops.convert_to_tensor(
      tensor_shape.TensorShape(handle.op.get_attr("shape")))
  indices = op.inputs[1]
  size = array_ops.expand_dims(array_ops.size(indices), 0)
  values_shape = array_ops.concat([size, params_shape[1:]], 0)
  values = array_ops.reshape(grad, values_shape)
  indices = array_ops.reshape(indices, size)
  return [ops.IndexedSlices(values, indices, params_shape), None] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:resource_variable_ops.py

示例2: call

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def call(self, inputs):
    # There is no TF op for 1D pooling, hence we make the inputs 4D.
    if self.data_format == 'channels_last':
      inputs = array_ops.expand_dims(inputs, 2)
      pool_shape = (1,) + self.pool_size + (1, 1)
      strides = (1,) + self.strides + (1, 1)
      data_format = 'NHWC'
    else:
      inputs = array_ops.expand_dims(inputs, 1)
      pool_shape = (1, 1) + self.pool_size + (1,)
      strides = (1, 1) + self.strides + (1,)
      data_format = 'NCHW'

    outputs = self.pool_function(
        inputs,
        ksize=pool_shape,
        strides=strides,
        padding=self.padding.upper(),
        data_format=data_format)

    if self.data_format == 'channels_last':
      return array_ops.squeeze(outputs, 2)
    else:
      return array_ops.squeeze(outputs, 1) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:pooling.py

示例3: tensors_to_item

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def tensors_to_item(self, keys_to_tensors):
    """Maps the given dictionary of tensors to a contatenated list of bboxes.

    Args:
      keys_to_tensors: a mapping of TF-Example keys to parsed tensors.

    Returns:
      [num_boxes, 4] tensor of bounding box coordinates,
        i.e. 1 bounding box per row, in order [y_min, x_min, y_max, x_max].
    """
    sides = []
    for key in self._full_keys:
      side = array_ops.expand_dims(keys_to_tensors[key].values, 0)
      sides.append(side)

    bounding_box = array_ops.concat(sides, 0)
    return array_ops.transpose(bounding_box) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:tfexample_decoder.py

示例4: _define_diag_covariance_probs

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _define_diag_covariance_probs(self, shard_id, shard):
    """Defines the diagonal covariance probabilities per example in a class.

    Args:
      shard_id: id of the current shard.
      shard: current data shard, 1 X num_examples X dimensions.

    Returns a matrix num_examples * num_classes.
    """
    # num_classes X 1
    # TODO(xavigonzalvo): look into alternatives to log for
    # reparametrization of variance parameters.
    det_expanded = math_ops.reduce_sum(
        math_ops.log(self._covs + 1e-3), 1, keep_dims=True)
    diff = shard - self._means
    x2 = math_ops.square(diff)
    cov_expanded = array_ops.expand_dims(1.0 / (self._covs + 1e-3), 2)
    # num_classes X num_examples
    x2_cov = math_ops.matmul(x2, cov_expanded)
    x2_cov = array_ops.transpose(array_ops.squeeze(x2_cov, [2]))
    self._probs[shard_id] = -0.5 * (
        math_ops.to_float(self._dimensions) * math_ops.log(2.0 * np.pi) +
        array_ops.transpose(det_expanded) + x2_cov) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:gmm_ops.py

示例5: _define_partial_maximization_operation

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _define_partial_maximization_operation(self, shard_id, shard):
    """Computes the partial statistics of the means and covariances.

    Args:
      shard_id: current shard id.
      shard: current data shard, 1 X num_examples X dimensions.
    """
    # Soft assignment of each data point to each of the two clusters.
    self._points_in_k[shard_id] = math_ops.reduce_sum(
        self._w[shard_id], 0, keep_dims=True)
    # Partial means.
    w_mul_x = array_ops.expand_dims(
        math_ops.matmul(
            self._w[shard_id], array_ops.squeeze(shard, [0]), transpose_a=True),
        1)
    self._w_mul_x.append(w_mul_x)
    # Partial covariances.
    x = array_ops.concat([shard for _ in range(self._num_classes)], 0)
    x_trans = array_ops.transpose(x, perm=[0, 2, 1])
    x_mul_w = array_ops.concat([
        array_ops.expand_dims(x_trans[k, :, :] * self._w[shard_id][:, k], 0)
        for k in range(self._num_classes)
    ], 0)
    self._w_mul_x2.append(math_ops.matmul(x_mul_w, x)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:gmm_ops.py

示例6: repeat

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def repeat(x, n):
  """Repeats a 2D tensor.

  if `x` has shape (samples, dim) and `n` is `2`,
  the output will have shape `(samples, 2, dim)`.

  Arguments:
      x: Tensor or variable.
      n: Python integer, number of times to repeat.

  Returns:
      A tensor.
  """
  assert ndim(x) == 2
  x = array_ops.expand_dims(x, 1)
  pattern = array_ops.stack([1, n, 1])
  return array_ops.tile(x, pattern) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:backend.py

示例7: _lengths_to_masks

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _lengths_to_masks(lengths, max_length):
  """Creates a binary matrix that can be used to mask away padding.

  Args:
    lengths: A vector of integers representing lengths.
    max_length: An integer indicating the maximum length. All values in
      lengths should be less than max_length.
  Returns:
    masks: Masks that can be used to get rid of padding.
  """
  tiled_ranges = array_ops.tile(
      array_ops.expand_dims(math_ops.range(max_length), 0),
      [array_ops.shape(lengths)[0], 1])
  lengths = array_ops.expand_dims(lengths, 1)
  masks = math_ops.to_float(
      math_ops.to_int64(tiled_ranges) < math_ops.to_int64(lengths))
  return masks 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:crf.py

示例8: _tile_batch

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _tile_batch(t, multiplier):
  """Core single-tensor implementation of tile_batch."""
  t = ops.convert_to_tensor(t, name="t")
  shape_t = array_ops.shape(t)
  if t.shape.ndims is None or t.shape.ndims < 1:
    raise ValueError("t must have statically known rank")
  tiling = [1] * (t.shape.ndims + 1)
  tiling[1] = multiplier
  tiled_static_batch_size = (
      t.shape[0].value * multiplier if t.shape[0].value is not None else None)
  tiled = array_ops.tile(array_ops.expand_dims(t, 1), tiling)
  tiled = array_ops.reshape(
      tiled, array_ops.concat(([shape_t[0] * multiplier], shape_t[1:]), 0))
  tiled.set_shape(
      tensor_shape.TensorShape(
          [tiled_static_batch_size]).concatenate(t.shape[1:]))
  return tiled 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:beam_search_decoder.py

示例9: _linear_predictions

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _linear_predictions(self, examples):
    """Returns predictions of the form w*x."""
    with name_scope('sdca/prediction'):
      sparse_variables = self._convert_n_to_tensor(self._variables[
          'sparse_features_weights'])
      result = 0.0
      for sfc, sv in zip(examples['sparse_features'], sparse_variables):
        # TODO(sibyl-Aix6ihai): following does not take care of missing features.
        result += math_ops.segment_sum(
            math_ops.multiply(
                array_ops.gather(sv, sfc.feature_indices), sfc.feature_values),
            sfc.example_indices)
      dense_features = self._convert_n_to_tensor(examples['dense_features'])
      dense_variables = self._convert_n_to_tensor(self._variables[
          'dense_features_weights'])

      for i in range(len(dense_variables)):
        result += math_ops.matmul(dense_features[i],
                                  array_ops.expand_dims(dense_variables[i], -1))

    # Reshaping to allow shape inference at graph construction time.
    return array_ops.reshape(result, [-1]) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:sdca_ops.py

示例10: _softmax_cross_entropy_loss

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _softmax_cross_entropy_loss(labels, logits, weights=None):
  with ops.name_scope(
      None, "softmax_cross_entropy_loss", (logits, labels,)) as name:
    labels = ops.convert_to_tensor(labels)
    # Check that we got integer for classification.
    if not labels.dtype.is_integer:
      raise ValueError("Labels dtype should be integer "
                       "Instead got %s." % labels.dtype)

    # sparse_softmax_cross_entropy_with_logits requires [batch_size] labels.
    is_squeezed_labels = False
    # TODO(ptucker): This will break for dynamic shapes.
    if len(labels.get_shape()) == 2:
      labels = array_ops.squeeze(labels, squeeze_dims=(1,))
      is_squeezed_labels = True

    loss = nn.sparse_softmax_cross_entropy_with_logits(
        labels=labels, logits=logits, name=name)

    # Restore squeezed dimension, if necessary, so loss matches weights shape.
    if is_squeezed_labels:
      loss = array_ops.expand_dims(loss, axis=(1,))

    return _compute_weighted_loss(loss, weights) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:head.py

示例11: _mean

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _mean(self):
    with ops.control_dependencies(self._assertions):
      distribution_means = [d.mean() for d in self.components]
      cat_probs = self._cat_probs(log_probs=False)
      # This was checked to not be None at construction time.
      static_event_rank = self.event_shape.ndims
      # Expand the rank of x up to static_event_rank times so that
      # broadcasting works correctly.
      def expand(x):
        expanded_x = x
        for _ in range(static_event_rank):
          expanded_x = array_ops.expand_dims(expanded_x, -1)
        return expanded_x
      cat_probs = [expand(c_p) for c_p in cat_probs]
      partial_means = [
          c_p * m for (c_p, m) in zip(cat_probs, distribution_means)
      ]
      # These should all be the same shape by virtue of matching
      # batch_shape and event_shape.
      return math_ops.add_n(partial_means) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:mixture.py

示例12: add_to_tensor

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def add_to_tensor(self, mat, name="add_to_tensor"):
    """Add matrix represented by this operator to `mat`.  Equiv to `I + mat`.

    Args:
      mat:  `Tensor` with same `dtype` and shape broadcastable to `self`.
      name:  A name to give this `Op`.

    Returns:
      A `Tensor` with broadcast shape and same `dtype` as `self`.
    """
    with self._name_scope(name, values=[mat]):
      # Shape [B1,...,Bb, 1]
      multiplier_vector = array_ops.expand_dims(self.multiplier, -1)

      # Shape [C1,...,Cc, M, M]
      mat = ops.convert_to_tensor(mat, name="mat")

      # Shape [C1,...,Cc, M]
      mat_diag = array_ops.matrix_diag_part(mat)

      # multiplier_vector broadcasts here.
      new_diag = multiplier_vector + mat_diag

      return array_ops.matrix_set_diag(mat, new_diag) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:linear_operator_identity.py

示例13: call

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def call(self, inputs):
    inputs = ops.convert_to_tensor(inputs, dtype=self.dtype)
    ndim = self._input_rank

    shape = self.gamma.get_shape().as_list()
    gamma = array_ops.reshape(self.gamma, (ndim - 2) * [1] + shape)

    # Compute normalization pool.
    if self.data_format == 'channels_first':
      norm_pool = nn.convolution(
          math_ops.square(inputs),
          gamma,
          'VALID',
          data_format='NC' + 'DHW' [-(ndim - 2):])
      if ndim == 3:
        norm_pool = array_ops.expand_dims(norm_pool, 2)
        norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
        norm_pool = array_ops.squeeze(norm_pool, [2])
      elif ndim == 5:
        shape = array_ops.shape(norm_pool)
        norm_pool = array_ops.reshape(norm_pool, shape[:3] + [-1])
        norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
        norm_pool = array_ops.reshape(norm_pool, shape)
      else:  # ndim == 4
        norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NCHW')
    else:  # channels_last
      norm_pool = nn.convolution(math_ops.square(inputs), gamma, 'VALID')
      norm_pool = nn.bias_add(norm_pool, self.beta, data_format='NHWC')
    norm_pool = math_ops.sqrt(norm_pool)

    if self.inverse:
      outputs = inputs * norm_pool
    else:
      outputs = inputs / norm_pool
    outputs.set_shape(inputs.get_shape())
    return outputs 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:38,代碼來源:layers.py

示例14: _SparseDenseCwiseMulOrDivGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _SparseDenseCwiseMulOrDivGrad(op, grad, is_mul):
  """Common code for SparseDenseCwise{Mul,Div} gradients."""
  x_indices = op.inputs[0]
  x_shape = op.inputs[2]
  y = op.inputs[3]

  y_shape = math_ops.to_int64(array_ops.shape(y))
  num_added_dims = array_ops.expand_dims(
      array_ops.size(x_shape) - array_ops.size(y_shape), 0)
  augmented_y_shape = array_ops.concat(
      [array_ops.ones(num_added_dims, ops.dtypes.int64), y_shape], 0)

  scaling = x_shape // augmented_y_shape
  scaled_indices = x_indices // scaling
  scaled_indices = array_ops.slice(scaled_indices,
                                   array_ops.concat([[0], num_added_dims], 0),
                                   [-1, -1])
  dense_vals = array_ops.gather_nd(y, scaled_indices)

  if is_mul:
    dx = grad * dense_vals
    dy_val = grad * op.inputs[1]
  else:
    dx = grad / dense_vals
    dy_val = grad * (-op.inputs[1] / math_ops.square(dense_vals))
  # indices can repeat after scaling, so we can't use sparse_to_dense().
  dy = sparse_ops.sparse_add(
      array_ops.zeros_like(y),
      sparse_tensor.SparseTensor(scaled_indices, dy_val, y_shape))

  # (sp_indices, sp_vals, sp_shape, dense)
  return (None, dx, None, dy) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:34,代碼來源:sparse_grad.py

示例15: _GatherGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import expand_dims [as 別名]
def _GatherGrad(op, grad):
  """Gradient for Gather op."""
  # params can be large, so colocate the shape calculation with it.
  params = op.inputs[0]
  with ops.colocate_with(params):
    params_shape = array_ops.shape(params)

  # Build appropriately shaped IndexedSlices
  indices = op.inputs[1]
  size = array_ops.expand_dims(array_ops.size(indices), 0)
  values_shape = array_ops.concat([size, params_shape[1:]], 0)
  values = array_ops.reshape(grad, values_shape)
  indices = array_ops.reshape(indices, size)
  return [ops.IndexedSlices(values, indices, params_shape), None] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:16,代碼來源:array_grad.py


注:本文中的tensorflow.python.ops.array_ops.expand_dims方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。