當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.diag_part方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.diag_part方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.diag_part方法的具體用法?Python array_ops.diag_part怎麽用?Python array_ops.diag_part使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.diag_part方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _DiagGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import diag_part [as 別名]
def _DiagGrad(_, grad):
  return array_ops.diag_part(grad) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:array_grad.py

示例2: __call__

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import diag_part [as 別名]
def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    # Check the shape
    if len(shape) < 2:
      raise ValueError("The tensor to initialize must be "
                       "at least two-dimensional")
    # Flatten the input shape with the last dimension remaining
    # its original shape so it works for conv2d
    num_rows = 1
    for dim in shape[:-1]:
      num_rows *= dim
    num_cols = shape[-1]
    flat_shape = (num_rows, num_cols)

    # Generate a random matrix
    a = random_ops.random_normal(flat_shape, dtype=dtype, seed=self.seed)
    # Compute the qr factorization
    q, r = linalg_ops.qr(a, full_matrices=False)
    # Make Q uniform
    square_len = math_ops.minimum(num_rows, num_cols)
    d = array_ops.diag_part(r[:square_len, :square_len])
    ph = d / math_ops.abs(d)
    q *= ph
    # Pad zeros to Q (if rows smaller than cols)
    if num_rows < num_cols:
      padding = array_ops.zeros([num_rows, num_cols - num_rows], dtype=dtype)
      q = array_ops.concat([q, padding], 1)
    return self.gain * array_ops.reshape(q, shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:31,代碼來源:init_ops.py

示例3: _batch_log_det

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import diag_part [as 別名]
def _batch_log_det(self):
    """Log determinant of every batch member."""
    # Note that array_ops.diag_part does not seem more efficient for non-batch,
    # and would give a bad result for a batch matrix, so aways use
    # matrix_diag_part.
    diag = array_ops.matrix_diag_part(self._chol)
    det = 2.0 * math_ops.reduce_sum(math_ops.log(math_ops.abs(diag)),
                                    reduction_indices=[-1])
    det.set_shape(self.get_shape()[:-2])
    return det 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:12,代碼來源:operator_pd_cholesky.py

示例4: _batch_log_det

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import diag_part [as 別名]
def _batch_log_det(self):
    """Log determinant of every batch member."""
    # Note that array_ops.diag_part does not seem more efficient for non-batch,
    # and would give a bad result for a batch matrix, so aways use
    # matrix_diag_part.
    diag = array_ops.matrix_diag_part(self._chol)
    det = 2.0 * math_ops.reduce_sum(math_ops.log(diag), reduction_indices=[-1])
    det.set_shape(self.get_shape()[:-2])
    return det 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:11,代碼來源:operator_pd_cholesky.py

示例5: __call__

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import diag_part [as 別名]
def __call__(self, shape, dtype=None, partition_info=None):
    if dtype is None:
      dtype = self.dtype
    # Check the shape
    if len(shape) < 2:
      raise ValueError("The tensor to initialize must be "
                       "at least two-dimensional")
    # Flatten the input shape with the last dimension remaining
    # its original shape so it works for conv2d
    num_rows = 1
    for dim in shape[:-1]:
      num_rows *= dim
    num_cols = shape[-1]
    flat_shape = (num_cols, num_rows) if num_rows < num_cols else (num_rows,
                                                                   num_cols)

    # Generate a random matrix
    a = random_ops.random_normal(flat_shape, dtype=dtype, seed=self.seed)
    # Compute the qr factorization
    q, r = linalg_ops.qr(a, full_matrices=False)
    # Make Q uniform
    d = array_ops.diag_part(r)
    ph = d / math_ops.abs(d)
    q *= ph
    if num_rows < num_cols:
      q = array_ops.matrix_transpose(q)
    return self.gain * array_ops.reshape(q, shape) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:29,代碼來源:init_ops.py


注:本文中的tensorflow.python.ops.array_ops.diag_part方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。