當前位置: 首頁>>代碼示例>>Python>>正文


Python array_ops.concat方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.array_ops.concat方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.concat方法的具體用法?Python array_ops.concat怎麽用?Python array_ops.concat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.array_ops的用法示例。


在下文中一共展示了array_ops.concat方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _dense_inner_flatten

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _dense_inner_flatten(inputs, new_rank):
  """Helper function for `inner_flatten`."""
  rank_assertion = check_ops.assert_rank_at_least(
      inputs, new_rank, message='inputs has rank less than new_rank')
  with ops.control_dependencies([rank_assertion]):
    outer_dimensions = array_ops.strided_slice(
        array_ops.shape(inputs), [0], [new_rank - 1])
    new_shape = array_ops.concat((outer_dimensions, [-1]), 0)
    reshaped = array_ops.reshape(inputs, new_shape)

  # if `new_rank` is an integer, try to calculate new shape.
  if isinstance(new_rank, six.integer_types):
    static_shape = inputs.get_shape()
    if static_shape is not None and static_shape.dims is not None:
      static_shape = static_shape.as_list()
      static_outer_dims = static_shape[:new_rank - 1]
      static_inner_dims = static_shape[new_rank - 1:]
      flattened_dimension = 1
      for inner_dim in static_inner_dims:
        if inner_dim is None:
          flattened_dimension = None
          break
        flattened_dimension *= inner_dim
      reshaped.set_shape(static_outer_dims + [flattened_dimension])
  return reshaped 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:27,代碼來源:layers.py

示例2: _transpose_batch_time

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _transpose_batch_time(x):
    """Transpose the batch and time dimensions of a Tensor.
    Retains as much of the static shape information as possible.
    Args:
        x: A tensor of rank 2 or higher.
    Returns:
        x transposed along the first two dimensions.
    Raises:
        ValueError: if `x` is rank 1 or lower.
    """
    x_static_shape = x.get_shape()
    if x_static_shape.ndims is not None and x_static_shape.ndims < 2:
        raise ValueError(
            "Expected input tensor %s to have rank at least 2, but saw shape: %s" %
            (x, x_static_shape))
    x_rank = array_ops.rank(x)
    x_t = array_ops.transpose(
        x, array_ops.concat(
            ([1, 0], math_ops.range(2, x_rank)), axis=0))
    x_t.set_shape(
        tensor_shape.TensorShape([
            x_static_shape[1].value, x_static_shape[0].value
        ]).concatenate(x_static_shape[2:]))
    return x_t 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:26,代碼來源:dynamic_decoder.py

示例3: call

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def call(self, inputs, state):
    """Long short-term memory cell (LSTM)."""
    sigmoid = math_ops.sigmoid
    # Parameters of gates are concatenated into one multiply for efficiency.
    if self._state_is_tuple:
      c, h = state
    else:
      c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1)

    concat = _linear([inputs, h], 4 * self._num_units, True)

    # i = input_gate, j = new_input, f = forget_gate, o = output_gate
    i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)

    new_c = (
        c * sigmoid(f + self._forget_bias) + sigmoid(i) * self._activation(j))
    new_h = self._activation(new_c) * sigmoid(o)

    if self._state_is_tuple:
      new_state = LSTMStateTuple(new_c, new_h)
    else:
      new_state = array_ops.concat([new_c, new_h], 1)
    return new_h, new_state 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:rnn_cell_impl.py

示例4: crelu

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def crelu(features, name=None):
  """Computes Concatenated ReLU.

  Concatenates a ReLU which selects only the positive part of the activation
  with a ReLU which selects only the *negative* part of the activation.
  Note that as a result this non-linearity doubles the depth of the activations.
  Source: [Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units. W. Shang, et al.](https://arxiv.org/abs/1603.05201) 

  Args:
    features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
      `int16`, or `int8`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` with the same type as `features`.
  """
  with ops.name_scope(name, "CRelu", [features]) as name:
    features = ops.convert_to_tensor(features, name="features")
    c = array_ops.concat([features, -features], -1, name=name)
    return gen_nn_ops.relu(c) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:nn_ops.py

示例5: _flatten_outer_dims

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _flatten_outer_dims(logits):
  """Flattens logits' outer dimensions and keep its last dimension."""
  rank = array_ops.rank(logits)
  last_dim_size = array_ops.slice(
      array_ops.shape(logits), [math_ops.subtract(rank, 1)], [1])
  output = array_ops.reshape(logits, array_ops.concat([[-1], last_dim_size], 0))

  # Set output shape if known.
  shape = logits.get_shape()
  if shape is not None and shape.dims is not None:
    shape = shape.as_list()
    product = 1
    product_valid = True
    for d in shape[:-1]:
      if d is None:
        product_valid = False
        break
      else:
        product *= d
    if product_valid:
      output_shape = [product, shape[-1]]
      output.set_shape(output_shape)

  return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:nn_ops.py

示例6: _MatrixSetDiagGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _MatrixSetDiagGrad(op, grad):
  """Gradient for MatrixSetDiag."""
  input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
  diag_shape = op.inputs[1].get_shape()
  batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
  matrix_shape = input_shape[-2:]
  if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
    diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
  else:
    with ops.colocate_with(grad):
      grad_shape = array_ops.shape(grad)
      grad_rank = array_ops.rank(grad)
      batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
      matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
      min_dim = math_ops.reduce_min(matrix_shape)
      diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
  grad_input = array_ops.matrix_set_diag(
      grad, array_ops.zeros(
          diag_shape, dtype=grad.dtype))
  grad_diag = array_ops.matrix_diag_part(grad)
  return (grad_input, grad_diag) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:array_grad.py

示例7: _GatherGrad

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _GatherGrad(op, grad):
  """Gradient for gather op."""
  # Build appropriately shaped IndexedSlices
  # Walk graph back until the original handle is found.
  # TODO(apassos): more robust way of getting the shape.
  handle = op.inputs[0]
  while handle.op.type != "VarHandleOp":
    handle = handle.op.inputs[0]
  params_shape = ops.convert_to_tensor(
      tensor_shape.TensorShape(handle.op.get_attr("shape")))
  indices = op.inputs[1]
  size = array_ops.expand_dims(array_ops.size(indices), 0)
  values_shape = array_ops.concat([size, params_shape[1:]], 0)
  values = array_ops.reshape(grad, values_shape)
  indices = array_ops.reshape(indices, size)
  return [ops.IndexedSlices(values, indices, params_shape), None] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:resource_variable_ops.py

示例8: _sample_n

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _sample_n(self, n, seed=None):
    n_draws = math_ops.cast(self.total_count, dtype=dtypes.int32)
    if self.total_count.get_shape().ndims is not None:
      if self.total_count.get_shape().ndims != 0:
        raise NotImplementedError(
            "Sample only supported for scalar number of draws.")
    elif self.validate_args:
      is_scalar = check_ops.assert_rank(
          n_draws, 0,
          message="Sample only supported for scalar number of draws.")
      n_draws = control_flow_ops.with_dependencies([is_scalar], n_draws)
    k = self.event_shape_tensor()[0]
    # Flatten batch dims so logits has shape [B, k],
    # where B = reduce_prod(self.batch_shape_tensor()).
    draws = random_ops.multinomial(
        logits=array_ops.reshape(self.logits, [-1, k]),
        num_samples=n * n_draws,
        seed=seed)
    draws = array_ops.reshape(draws, shape=[-1, n, n_draws])
    x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k),
                            axis=-2)  # shape: [B, n, k]
    x = array_ops.transpose(x, perm=[1, 0, 2])
    final_shape = array_ops.concat([[n], self.batch_shape_tensor(), [k]], 0)
    return array_ops.reshape(x, final_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:multinomial.py

示例9: _sample_n

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _sample_n(self, n, seed=None):
    shape = array_ops.concat([[n], array_ops.shape(self._rate)], 0)
    # Uniform variates must be sampled from the open-interval `(0, 1)` rather
    # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
    # because it is the smallest, positive, "normal" number. A "normal" number
    # is such that the mantissa has an implicit leading 1. Normal, positive
    # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
    # this case, a subnormal number (i.e., np.nextafter) can cause us to sample
    # 0.
    sampled = random_ops.random_uniform(
        shape,
        minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
        maxval=1.,
        seed=seed,
        dtype=self.dtype)
    return -math_ops.log(sampled) / self._rate 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:exponential.py

示例10: _sample_n

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _sample_n(self, n, seed=None):
    n_draws = math_ops.cast(self.total_count, dtype=dtypes.int32)
    k = self.event_shape_tensor()[0]
    unnormalized_logits = array_ops.reshape(
        math_ops.log(random_ops.random_gamma(
            shape=[n],
            alpha=self.concentration,
            dtype=self.dtype,
            seed=seed)),
        shape=[-1, k])
    draws = random_ops.multinomial(
        logits=unnormalized_logits,
        num_samples=n_draws,
        seed=distribution_util.gen_new_seed(seed, salt="dirichlet_multinomial"))
    x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k), -2)
    final_shape = array_ops.concat([[n], self.batch_shape_tensor(), [k]], 0)
    return array_ops.reshape(x, final_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:dirichlet_multinomial.py

示例11: _sample_n

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _sample_n(self, n, seed=None):
    shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
    # Uniform variates must be sampled from the open-interval `(-1, 1)` rather
    # than `[-1, 1)`. In the case of `(0, 1)` we'd use
    # `np.finfo(self.dtype.as_numpy_dtype).tiny` because it is the smallest,
    # positive, "normal" number. However, the concept of subnormality exists
    # only at zero; here we need the smallest usable number larger than -1,
    # i.e., `-1 + eps/2`.
    uniform_samples = random_ops.random_uniform(
        shape=shape,
        minval=np.nextafter(self.dtype.as_numpy_dtype(-1.),
                            self.dtype.as_numpy_dtype(0.)),
        maxval=1.,
        dtype=self.dtype,
        seed=seed)
    return (self.loc - self.scale * math_ops.sign(uniform_samples) *
            math_ops.log1p(-math_ops.abs(uniform_samples))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:laplace.py

示例12: _get_dense_tensor

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
    """Returns a `Tensor`.

    The output of this function will be used by model-builder-functions. For
    example the pseudo code of `input_layer` will be like:

    ```python
    def input_layer(features, feature_columns, ...):
      outputs = [fc._get_dense_tensor(...) for fc in feature_columns]
      return tf.concat(outputs)
    ```

    Args:
      inputs: A `_LazyBuilder` object to access inputs.
      weight_collections: List of graph collections to which Variables (if any
        will be created) are added.
      trainable: If `True` also add variables to the graph collection
        `GraphKeys.TRAINABLE_VARIABLES` (see ${tf.Variable}).

    Returns:
      `Tensor` of shape [batch_size] + `_variable_shape`.
    """
    pass 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:feature_column.py

示例13: call

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def call(self, inputs, state):
    """LSTM cell with layer normalization and recurrent dropout."""
    c, h = state
    args = array_ops.concat([inputs, h], 1)
    concat = self._linear(args)

    i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)
    if self._layer_norm:
      i = self._norm(i, "input")
      j = self._norm(j, "transform")
      f = self._norm(f, "forget")
      o = self._norm(o, "output")

    g = self._activation(j)
    if (not isinstance(self._keep_prob, float)) or self._keep_prob < 1:
      g = nn_ops.dropout(g, self._keep_prob, seed=self._seed)

    new_c = (c * math_ops.sigmoid(f + self._forget_bias)
             + math_ops.sigmoid(i) * g)
    if self._layer_norm:
      new_c = self._norm(new_c, "state")
    new_h = self._activation(new_c) * math_ops.sigmoid(o)

    new_state = rnn_cell_impl.LSTMStateTuple(new_c, new_h)
    return new_h, new_state 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:rnn_cell.py

示例14: tensors_to_item

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def tensors_to_item(self, keys_to_tensors):
    """Maps the given dictionary of tensors to a contatenated list of bboxes.

    Args:
      keys_to_tensors: a mapping of TF-Example keys to parsed tensors.

    Returns:
      [num_boxes, 4] tensor of bounding box coordinates,
        i.e. 1 bounding box per row, in order [y_min, x_min, y_max, x_max].
    """
    sides = []
    for key in self._full_keys:
      side = array_ops.expand_dims(keys_to_tensors[key].values, 0)
      sides.append(side)

    bounding_box = array_ops.concat(sides, 0)
    return array_ops.transpose(bounding_box) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:tfexample_decoder.py

示例15: _define_partial_maximization_operation

# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _define_partial_maximization_operation(self, shard_id, shard):
    """Computes the partial statistics of the means and covariances.

    Args:
      shard_id: current shard id.
      shard: current data shard, 1 X num_examples X dimensions.
    """
    # Soft assignment of each data point to each of the two clusters.
    self._points_in_k[shard_id] = math_ops.reduce_sum(
        self._w[shard_id], 0, keep_dims=True)
    # Partial means.
    w_mul_x = array_ops.expand_dims(
        math_ops.matmul(
            self._w[shard_id], array_ops.squeeze(shard, [0]), transpose_a=True),
        1)
    self._w_mul_x.append(w_mul_x)
    # Partial covariances.
    x = array_ops.concat([shard for _ in range(self._num_classes)], 0)
    x_trans = array_ops.transpose(x, perm=[0, 2, 1])
    x_mul_w = array_ops.concat([
        array_ops.expand_dims(x_trans[k, :, :] * self._w[shard_id][:, k], 0)
        for k in range(self._num_classes)
    ], 0)
    self._w_mul_x2.append(math_ops.matmul(x_mul_w, x)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:gmm_ops.py


注:本文中的tensorflow.python.ops.array_ops.concat方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。