本文整理匯總了Python中tensorflow.python.ops.array_ops.concat方法的典型用法代碼示例。如果您正苦於以下問題:Python array_ops.concat方法的具體用法?Python array_ops.concat怎麽用?Python array_ops.concat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.array_ops
的用法示例。
在下文中一共展示了array_ops.concat方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _dense_inner_flatten
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _dense_inner_flatten(inputs, new_rank):
"""Helper function for `inner_flatten`."""
rank_assertion = check_ops.assert_rank_at_least(
inputs, new_rank, message='inputs has rank less than new_rank')
with ops.control_dependencies([rank_assertion]):
outer_dimensions = array_ops.strided_slice(
array_ops.shape(inputs), [0], [new_rank - 1])
new_shape = array_ops.concat((outer_dimensions, [-1]), 0)
reshaped = array_ops.reshape(inputs, new_shape)
# if `new_rank` is an integer, try to calculate new shape.
if isinstance(new_rank, six.integer_types):
static_shape = inputs.get_shape()
if static_shape is not None and static_shape.dims is not None:
static_shape = static_shape.as_list()
static_outer_dims = static_shape[:new_rank - 1]
static_inner_dims = static_shape[new_rank - 1:]
flattened_dimension = 1
for inner_dim in static_inner_dims:
if inner_dim is None:
flattened_dimension = None
break
flattened_dimension *= inner_dim
reshaped.set_shape(static_outer_dims + [flattened_dimension])
return reshaped
示例2: _transpose_batch_time
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _transpose_batch_time(x):
"""Transpose the batch and time dimensions of a Tensor.
Retains as much of the static shape information as possible.
Args:
x: A tensor of rank 2 or higher.
Returns:
x transposed along the first two dimensions.
Raises:
ValueError: if `x` is rank 1 or lower.
"""
x_static_shape = x.get_shape()
if x_static_shape.ndims is not None and x_static_shape.ndims < 2:
raise ValueError(
"Expected input tensor %s to have rank at least 2, but saw shape: %s" %
(x, x_static_shape))
x_rank = array_ops.rank(x)
x_t = array_ops.transpose(
x, array_ops.concat(
([1, 0], math_ops.range(2, x_rank)), axis=0))
x_t.set_shape(
tensor_shape.TensorShape([
x_static_shape[1].value, x_static_shape[0].value
]).concatenate(x_static_shape[2:]))
return x_t
示例3: call
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def call(self, inputs, state):
"""Long short-term memory cell (LSTM)."""
sigmoid = math_ops.sigmoid
# Parameters of gates are concatenated into one multiply for efficiency.
if self._state_is_tuple:
c, h = state
else:
c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1)
concat = _linear([inputs, h], 4 * self._num_units, True)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)
new_c = (
c * sigmoid(f + self._forget_bias) + sigmoid(i) * self._activation(j))
new_h = self._activation(new_c) * sigmoid(o)
if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = array_ops.concat([new_c, new_h], 1)
return new_h, new_state
示例4: crelu
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def crelu(features, name=None):
"""Computes Concatenated ReLU.
Concatenates a ReLU which selects only the positive part of the activation
with a ReLU which selects only the *negative* part of the activation.
Note that as a result this non-linearity doubles the depth of the activations.
Source: [Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units. W. Shang, et al.](https://arxiv.org/abs/1603.05201)
Args:
features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
`int16`, or `int8`.
name: A name for the operation (optional).
Returns:
A `Tensor` with the same type as `features`.
"""
with ops.name_scope(name, "CRelu", [features]) as name:
features = ops.convert_to_tensor(features, name="features")
c = array_ops.concat([features, -features], -1, name=name)
return gen_nn_ops.relu(c)
示例5: _flatten_outer_dims
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _flatten_outer_dims(logits):
"""Flattens logits' outer dimensions and keep its last dimension."""
rank = array_ops.rank(logits)
last_dim_size = array_ops.slice(
array_ops.shape(logits), [math_ops.subtract(rank, 1)], [1])
output = array_ops.reshape(logits, array_ops.concat([[-1], last_dim_size], 0))
# Set output shape if known.
shape = logits.get_shape()
if shape is not None and shape.dims is not None:
shape = shape.as_list()
product = 1
product_valid = True
for d in shape[:-1]:
if d is None:
product_valid = False
break
else:
product *= d
if product_valid:
output_shape = [product, shape[-1]]
output.set_shape(output_shape)
return output
示例6: _MatrixSetDiagGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _MatrixSetDiagGrad(op, grad):
"""Gradient for MatrixSetDiag."""
input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
diag_shape = op.inputs[1].get_shape()
batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
matrix_shape = input_shape[-2:]
if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
else:
with ops.colocate_with(grad):
grad_shape = array_ops.shape(grad)
grad_rank = array_ops.rank(grad)
batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
min_dim = math_ops.reduce_min(matrix_shape)
diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
grad_input = array_ops.matrix_set_diag(
grad, array_ops.zeros(
diag_shape, dtype=grad.dtype))
grad_diag = array_ops.matrix_diag_part(grad)
return (grad_input, grad_diag)
示例7: _GatherGrad
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _GatherGrad(op, grad):
"""Gradient for gather op."""
# Build appropriately shaped IndexedSlices
# Walk graph back until the original handle is found.
# TODO(apassos): more robust way of getting the shape.
handle = op.inputs[0]
while handle.op.type != "VarHandleOp":
handle = handle.op.inputs[0]
params_shape = ops.convert_to_tensor(
tensor_shape.TensorShape(handle.op.get_attr("shape")))
indices = op.inputs[1]
size = array_ops.expand_dims(array_ops.size(indices), 0)
values_shape = array_ops.concat([size, params_shape[1:]], 0)
values = array_ops.reshape(grad, values_shape)
indices = array_ops.reshape(indices, size)
return [ops.IndexedSlices(values, indices, params_shape), None]
示例8: _sample_n
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _sample_n(self, n, seed=None):
n_draws = math_ops.cast(self.total_count, dtype=dtypes.int32)
if self.total_count.get_shape().ndims is not None:
if self.total_count.get_shape().ndims != 0:
raise NotImplementedError(
"Sample only supported for scalar number of draws.")
elif self.validate_args:
is_scalar = check_ops.assert_rank(
n_draws, 0,
message="Sample only supported for scalar number of draws.")
n_draws = control_flow_ops.with_dependencies([is_scalar], n_draws)
k = self.event_shape_tensor()[0]
# Flatten batch dims so logits has shape [B, k],
# where B = reduce_prod(self.batch_shape_tensor()).
draws = random_ops.multinomial(
logits=array_ops.reshape(self.logits, [-1, k]),
num_samples=n * n_draws,
seed=seed)
draws = array_ops.reshape(draws, shape=[-1, n, n_draws])
x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k),
axis=-2) # shape: [B, n, k]
x = array_ops.transpose(x, perm=[1, 0, 2])
final_shape = array_ops.concat([[n], self.batch_shape_tensor(), [k]], 0)
return array_ops.reshape(x, final_shape)
示例9: _sample_n
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _sample_n(self, n, seed=None):
shape = array_ops.concat([[n], array_ops.shape(self._rate)], 0)
# Uniform variates must be sampled from the open-interval `(0, 1)` rather
# than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
# because it is the smallest, positive, "normal" number. A "normal" number
# is such that the mantissa has an implicit leading 1. Normal, positive
# numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
# this case, a subnormal number (i.e., np.nextafter) can cause us to sample
# 0.
sampled = random_ops.random_uniform(
shape,
minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
maxval=1.,
seed=seed,
dtype=self.dtype)
return -math_ops.log(sampled) / self._rate
示例10: _sample_n
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _sample_n(self, n, seed=None):
n_draws = math_ops.cast(self.total_count, dtype=dtypes.int32)
k = self.event_shape_tensor()[0]
unnormalized_logits = array_ops.reshape(
math_ops.log(random_ops.random_gamma(
shape=[n],
alpha=self.concentration,
dtype=self.dtype,
seed=seed)),
shape=[-1, k])
draws = random_ops.multinomial(
logits=unnormalized_logits,
num_samples=n_draws,
seed=distribution_util.gen_new_seed(seed, salt="dirichlet_multinomial"))
x = math_ops.reduce_sum(array_ops.one_hot(draws, depth=k), -2)
final_shape = array_ops.concat([[n], self.batch_shape_tensor(), [k]], 0)
return array_ops.reshape(x, final_shape)
示例11: _sample_n
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _sample_n(self, n, seed=None):
shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
# Uniform variates must be sampled from the open-interval `(-1, 1)` rather
# than `[-1, 1)`. In the case of `(0, 1)` we'd use
# `np.finfo(self.dtype.as_numpy_dtype).tiny` because it is the smallest,
# positive, "normal" number. However, the concept of subnormality exists
# only at zero; here we need the smallest usable number larger than -1,
# i.e., `-1 + eps/2`.
uniform_samples = random_ops.random_uniform(
shape=shape,
minval=np.nextafter(self.dtype.as_numpy_dtype(-1.),
self.dtype.as_numpy_dtype(0.)),
maxval=1.,
dtype=self.dtype,
seed=seed)
return (self.loc - self.scale * math_ops.sign(uniform_samples) *
math_ops.log1p(-math_ops.abs(uniform_samples)))
示例12: _get_dense_tensor
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
"""Returns a `Tensor`.
The output of this function will be used by model-builder-functions. For
example the pseudo code of `input_layer` will be like:
```python
def input_layer(features, feature_columns, ...):
outputs = [fc._get_dense_tensor(...) for fc in feature_columns]
return tf.concat(outputs)
```
Args:
inputs: A `_LazyBuilder` object to access inputs.
weight_collections: List of graph collections to which Variables (if any
will be created) are added.
trainable: If `True` also add variables to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see ${tf.Variable}).
Returns:
`Tensor` of shape [batch_size] + `_variable_shape`.
"""
pass
示例13: call
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def call(self, inputs, state):
"""LSTM cell with layer normalization and recurrent dropout."""
c, h = state
args = array_ops.concat([inputs, h], 1)
concat = self._linear(args)
i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)
if self._layer_norm:
i = self._norm(i, "input")
j = self._norm(j, "transform")
f = self._norm(f, "forget")
o = self._norm(o, "output")
g = self._activation(j)
if (not isinstance(self._keep_prob, float)) or self._keep_prob < 1:
g = nn_ops.dropout(g, self._keep_prob, seed=self._seed)
new_c = (c * math_ops.sigmoid(f + self._forget_bias)
+ math_ops.sigmoid(i) * g)
if self._layer_norm:
new_c = self._norm(new_c, "state")
new_h = self._activation(new_c) * math_ops.sigmoid(o)
new_state = rnn_cell_impl.LSTMStateTuple(new_c, new_h)
return new_h, new_state
示例14: tensors_to_item
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def tensors_to_item(self, keys_to_tensors):
"""Maps the given dictionary of tensors to a contatenated list of bboxes.
Args:
keys_to_tensors: a mapping of TF-Example keys to parsed tensors.
Returns:
[num_boxes, 4] tensor of bounding box coordinates,
i.e. 1 bounding box per row, in order [y_min, x_min, y_max, x_max].
"""
sides = []
for key in self._full_keys:
side = array_ops.expand_dims(keys_to_tensors[key].values, 0)
sides.append(side)
bounding_box = array_ops.concat(sides, 0)
return array_ops.transpose(bounding_box)
示例15: _define_partial_maximization_operation
# 需要導入模塊: from tensorflow.python.ops import array_ops [as 別名]
# 或者: from tensorflow.python.ops.array_ops import concat [as 別名]
def _define_partial_maximization_operation(self, shard_id, shard):
"""Computes the partial statistics of the means and covariances.
Args:
shard_id: current shard id.
shard: current data shard, 1 X num_examples X dimensions.
"""
# Soft assignment of each data point to each of the two clusters.
self._points_in_k[shard_id] = math_ops.reduce_sum(
self._w[shard_id], 0, keep_dims=True)
# Partial means.
w_mul_x = array_ops.expand_dims(
math_ops.matmul(
self._w[shard_id], array_ops.squeeze(shard, [0]), transpose_a=True),
1)
self._w_mul_x.append(w_mul_x)
# Partial covariances.
x = array_ops.concat([shard for _ in range(self._num_classes)], 0)
x_trans = array_ops.transpose(x, perm=[0, 2, 1])
x_mul_w = array_ops.concat([
array_ops.expand_dims(x_trans[k, :, :] * self._w[shard_id][:, k], 0)
for k in range(self._num_classes)
], 0)
self._w_mul_x2.append(math_ops.matmul(x_mul_w, x))