本文整理匯總了Python中tensorflow.python.lib.io.file_io.read_file_to_string方法的典型用法代碼示例。如果您正苦於以下問題:Python file_io.read_file_to_string方法的具體用法?Python file_io.read_file_to_string怎麽用?Python file_io.read_file_to_string使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.lib.io.file_io
的用法示例。
在下文中一共展示了file_io.read_file_to_string方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _latest_checkpoints_changed
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def _latest_checkpoints_changed(configs, run_path_pairs):
"""Returns true if the latest checkpoint has changed in any of the runs."""
for run_name, assets_dir in run_path_pairs:
if run_name not in configs:
config = projector_config_pb2.ProjectorConfig()
config_fpath = os.path.join(assets_dir, PROJECTOR_FILENAME)
if file_io.file_exists(config_fpath):
file_content = file_io.read_file_to_string(config_fpath)
text_format.Merge(file_content, config)
else:
config = configs[run_name]
# See if you can find a checkpoint file in the logdir.
logdir = _assets_dir_to_logdir(assets_dir)
ckpt_path = _find_latest_checkpoint(logdir)
if not ckpt_path:
continue
if config.model_checkpoint_path != ckpt_path:
return True
return False
示例2: _validate_asset_collection
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def _validate_asset_collection(self, export_dir, graph_collection_def,
expected_asset_file_name,
expected_asset_file_contents,
expected_asset_tensor_name):
assets_any = graph_collection_def[constants.ASSETS_KEY].any_list.value
asset = meta_graph_pb2.AssetFileDef()
assets_any[0].Unpack(asset)
assets_path = os.path.join(
compat.as_bytes(export_dir),
compat.as_bytes(constants.ASSETS_DIRECTORY),
compat.as_bytes(expected_asset_file_name))
actual_asset_contents = file_io.read_file_to_string(assets_path)
self.assertEqual(expected_asset_file_contents,
compat.as_text(actual_asset_contents))
self.assertEqual(expected_asset_file_name, asset.filename)
self.assertEqual(expected_asset_tensor_name, asset.tensor_info.name)
示例3: get_vocabulary
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def get_vocabulary(preprocess_output_dir, name):
"""Loads the vocabulary file as a list of strings.
Args:
preprocess_output_dir: Should contain the file CATEGORICAL_ANALYSIS % name.
name: name of the csv column.
Returns:
List of strings.
Raises:
ValueError: if file is missing.
"""
vocab_file = os.path.join(preprocess_output_dir, CATEGORICAL_ANALYSIS % name)
if not file_io.file_exists(vocab_file):
raise ValueError('File %s not found in %s' %
(CATEGORICAL_ANALYSIS % name, preprocess_output_dir))
labels = python_portable_string(
file_io.read_file_to_string(vocab_file)).split('\n')
label_values = [x for x in labels if x] # remove empty lines
return label_values
示例4: local_analysis
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def local_analysis(args):
if args.analysis:
# Already analyzed.
return
if not args.schema or not args.features:
raise ValueError('Either --analysis, or both --schema and --features are provided.')
tf_config = json.loads(os.environ.get('TF_CONFIG', '{}'))
cluster_spec = tf_config.get('cluster', {})
if len(cluster_spec.get('worker', [])) > 0:
raise ValueError('If "schema" and "features" are provided, local analysis will run and ' +
'only BASIC scale-tier (no workers node) is supported.')
if cluster_spec and not (args.schema.startswith('gs://') and args.features.startswith('gs://')):
raise ValueError('Cloud trainer requires GCS paths for --schema and --features.')
print('Running analysis.')
schema = json.loads(file_io.read_file_to_string(args.schema).decode())
features = json.loads(file_io.read_file_to_string(args.features).decode())
args.analysis = os.path.join(args.job_dir, 'analysis')
args.transform = True
file_io.recursive_create_dir(args.analysis)
feature_analysis.run_local_analysis(args.analysis, args.train, schema, features)
print('Analysis done.')
示例5: _run_batch_prediction
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def _run_batch_prediction(self):
"""Run batch prediction using the cloudml engine prediction service.
There is no local version of this step as it's the last step.
"""
job_name = 'test_mltoolbox_batchprediction_%s' % uuid.uuid4().hex
cmd = ['gcloud ml-engine jobs submit prediction ' + job_name,
'--data-format=TEXT',
'--input-paths=' + self._csv_predict_filename,
'--output-path=' + self._prediction_output,
'--model-dir=' + os.path.join(self._train_output, 'model'),
'--runtime-version=1.0',
'--region=us-central1']
self._logger.debug('Running subprocess: %s \n\n' % ' '.join(cmd))
subprocess.check_call(' '.join(cmd), shell=True) # async call.
subprocess.check_call('gcloud ml-engine jobs stream-logs ' + job_name, shell=True)
# check that there was no errors.
error_files = file_io.get_matching_files(
os.path.join(self._prediction_output, 'prediction.errors_stats*'))
self.assertEqual(1, len(error_files))
error_str = file_io.read_file_to_string(error_files[0])
self.assertEqual('', error_str)
示例6: parse_schema_txt_file
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def parse_schema_txt_file(schema_path): # type: (str) -> Schema
"""
Parse a tf.metadata Schema txt file into its in-memory representation.
"""
assert file_io.file_exists(schema_path), "File not found: {}".format(schema_path)
schema = Schema()
schema_text = file_io.read_file_to_string(schema_path)
google.protobuf.text_format.Parse(schema_text, schema)
return schema
示例7: _GetState
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def _GetState(self):
"""Returns the latest checkpoint id."""
state = CheckpointState()
if file_io.file_exists(self._state_file):
content = file_io.read_file_to_string(self._state_file)
text_format.Merge(content, state)
return state
示例8: _read_latest_config_files
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def _read_latest_config_files(self, run_path_pairs):
"""Reads and returns the projector config files in every run directory."""
configs = {}
config_fpaths = {}
for run_name, assets_dir in run_path_pairs:
config = projector_config_pb2.ProjectorConfig()
config_fpath = os.path.join(assets_dir, PROJECTOR_FILENAME)
if file_io.file_exists(config_fpath):
file_content = file_io.read_file_to_string(config_fpath)
text_format.Merge(file_content, config)
has_tensor_files = False
for embedding in config.embeddings:
if embedding.tensor_path:
if not embedding.tensor_name:
embedding.tensor_name = os.path.basename(embedding.tensor_path)
has_tensor_files = True
break
if not config.model_checkpoint_path:
# See if you can find a checkpoint file in the logdir.
logdir = _assets_dir_to_logdir(assets_dir)
ckpt_path = _find_latest_checkpoint(logdir)
if not ckpt_path and not has_tensor_files:
continue
if ckpt_path:
config.model_checkpoint_path = ckpt_path
# Sanity check for the checkpoint file.
if (config.model_checkpoint_path and
not checkpoint_exists(config.model_checkpoint_path)):
logging.warning('Checkpoint file "%s" not found',
config.model_checkpoint_path)
continue
configs[run_name] = config
config_fpaths[run_name] = config_fpath
return configs, config_fpaths
示例9: _read_file
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def _read_file(filename):
"""Reads a file containing `GraphDef` and returns the protocol buffer.
Args:
filename: `graph_def` filename including the path.
Returns:
A `GraphDef` protocol buffer.
Raises:
IOError: If the file doesn't exist, or cannot be successfully parsed.
"""
graph_def = graph_pb2.GraphDef()
if not file_io.file_exists(filename):
raise IOError("File %s does not exist." % filename)
# First try to read it as a binary file.
file_content = file_io.read_file_to_string(filename)
try:
graph_def.ParseFromString(file_content)
return graph_def
except Exception: # pylint: disable=broad-except
pass
# Next try to read it as a text file.
try:
text_format.Merge(file_content.decode("utf-8"), graph_def)
except text_format.ParseError as e:
raise IOError("Cannot parse file %s: %s." % (filename, str(e)))
return graph_def
示例10: read_meta_graph_file
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def read_meta_graph_file(filename):
"""Reads a file containing `MetaGraphDef` and returns the protocol buffer.
Args:
filename: `meta_graph_def` filename including the path.
Returns:
A `MetaGraphDef` protocol buffer.
Raises:
IOError: If the file doesn't exist, or cannot be successfully parsed.
"""
meta_graph_def = meta_graph_pb2.MetaGraphDef()
if not file_io.file_exists(filename):
raise IOError("File %s does not exist." % filename)
# First try to read it as a binary file.
file_content = file_io.read_file_to_string(filename)
try:
meta_graph_def.ParseFromString(file_content)
return meta_graph_def
except Exception: # pylint: disable=broad-except
pass
# Next try to read it as a text file.
try:
text_format.Merge(file_content.decode("utf-8"), meta_graph_def)
except text_format.ParseError as e:
raise IOError("Cannot parse file %s: %s." % (filename, str(e)))
return meta_graph_def
示例11: _read_latest_config_files
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def _read_latest_config_files(self, run_path_pairs):
"""Reads and returns the projector config files in every run directory."""
configs = {}
config_fpaths = {}
for run_name, logdir in run_path_pairs:
config = ProjectorConfig()
config_fpath = os.path.join(logdir, PROJECTOR_FILENAME)
if file_io.file_exists(config_fpath):
file_content = file_io.read_file_to_string(config_fpath).decode('utf-8')
text_format.Merge(file_content, config)
has_tensor_files = False
for embedding in config.embeddings:
if embedding.tensor_path:
has_tensor_files = True
break
if not config.model_checkpoint_path:
# See if you can find a checkpoint file in the logdir.
ckpt_path = latest_checkpoint(logdir)
if not ckpt_path:
# Or in the parent of logdir.
ckpt_path = latest_checkpoint(os.path.join(logdir, os.pardir))
if not ckpt_path and not has_tensor_files:
continue
if ckpt_path:
config.model_checkpoint_path = ckpt_path
# Sanity check for the checkpoint file.
if (config.model_checkpoint_path and
not checkpoint_exists(config.model_checkpoint_path)):
logging.warning('Checkpoint file %s not found',
config.model_checkpoint_path)
continue
configs[run_name] = config
config_fpaths[run_name] = config_fpath
return configs, config_fpaths
示例12: __init__
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def __init__(self, datasources, schema, metadata, features):
"""Initializes a DataSet with the specified DataSource instances.
Arguments:
datasources: the set of contained DataSource instances key'ed by name.
schema: the description of the source data.
metadata: additional per-field information associated with the data.
features: the optional description of the transformed data.
"""
self._datasources = datasources
if type(schema) is str:
# Interpret this as a file path if the value is a string
schema = tfio.read_file_to_string(schema)
schema = Schema.parse(schema)
self._schema = schema
if metadata:
if type(metadata) is str:
# Interpret this as a file path if the value is a string
metadata = tfio.read_file_to_string(metadata)
metadata = Metadata.parse(metadata)
self._metadata = metadata
if features:
if type(features) is str:
# Interpret this as a file path if the value is a string
features = tfio.read_file_to_string(features)
features = FeatureSet.parse(features)
self._features = features
示例13: _run_batch_prediction
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def _run_batch_prediction(self, output_dir, use_target):
reglinear.batch_predict(
training_dir=self._train_output,
prediction_input_file=(self._csv_eval_filename if use_target
else self._csv_predict_filename),
output_dir=output_dir,
mode='evaluation' if use_target else 'prediction',
batch_size=4,
output_format='csv')
# check errors file is empty
errors = file_io.get_matching_files(os.path.join(output_dir, 'errors*'))
self.assertEqual(len(errors), 1)
if os.path.getsize(errors[0]):
with open(errors[0]) as errors_file:
self.fail(msg=errors_file.read())
# check predictions files are not empty
predictions = file_io.get_matching_files(os.path.join(output_dir,
'predictions*'))
self.assertGreater(os.path.getsize(predictions[0]), 0)
# check the schema is correct
schema_file = os.path.join(output_dir, 'csv_schema.json')
self.assertTrue(os.path.isfile(schema_file))
schema = json.loads(file_io.read_file_to_string(schema_file))
self.assertEqual(schema[0]['name'], 'key')
self.assertEqual(schema[1]['name'], 'predicted')
if use_target:
self.assertEqual(schema[2]['name'], 'target')
self.assertEqual(len(schema), 3)
else:
self.assertEqual(len(schema), 2)
示例14: run_analysis
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def run_analysis(args):
"""Builds an analysis files for training."""
# Read the schema and input feature types
schema_list = json.loads(
file_io.read_file_to_string(args.schema_file))
run_numerical_categorical_analysis(args, schema_list)
# Also save a copy of the schema in the output folder.
file_io.copy(args.schema_file,
os.path.join(args.output_dir, SCHEMA_FILE),
overwrite=True)
示例15: run_analysis
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import read_file_to_string [as 別名]
def run_analysis(args):
"""Builds an analysis file for training.
Uses BiqQuery tables to do the analysis.
Args:
args: command line args
Raises:
ValueError if schema contains unknown types.
"""
import google.datalab.bigquery as bq
if args.bigquery_table:
table = bq.Table(args.bigquery_table)
schema_list = table.schema._bq_schema
else:
schema_list = json.loads(
file_io.read_file_to_string(args.schema_file).decode())
table = bq.ExternalDataSource(
source=args.input_file_pattern,
schema=bq.Schema(schema_list))
# Check the schema is supported.
for col_schema in schema_list:
col_type = col_schema['type'].lower()
if col_type != 'string' and col_type != 'integer' and col_type != 'float':
raise ValueError('Schema contains an unsupported type %s.' % col_type)
run_numerical_analysis(table, schema_list, args)
run_categorical_analysis(table, schema_list, args)
# Save a copy of the schema to the output location.
file_io.write_string_to_file(
os.path.join(args.output_dir, SCHEMA_FILE),
json.dumps(schema_list, indent=2, separators=(',', ': ')))