本文整理匯總了Python中tensorflow.python.lib.io.file_io.is_directory方法的典型用法代碼示例。如果您正苦於以下問題:Python file_io.is_directory方法的具體用法?Python file_io.is_directory怎麽用?Python file_io.is_directory使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.lib.io.file_io
的用法示例。
在下文中一共展示了file_io.is_directory方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _recursive_copy
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import is_directory [as 別名]
def _recursive_copy(src_dir, dest_dir):
"""Copy the contents of src_dir into the folder dest_dir.
Args:
src_dir: gsc or local path.
dest_dir: gcs or local path.
When called, dest_dir should exist.
"""
src_dir = python_portable_string(src_dir)
dest_dir = python_portable_string(dest_dir)
file_io.recursive_create_dir(dest_dir)
for file_name in file_io.list_directory(src_dir):
old_path = os.path.join(src_dir, file_name)
new_path = os.path.join(dest_dir, file_name)
if file_io.is_directory(old_path):
_recursive_copy(old_path, new_path)
else:
file_io.copy(old_path, new_path, overwrite=True)
示例2: recursive_copy
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import is_directory [as 別名]
def recursive_copy(src_dir, dest_dir):
"""Copy the contents of src_dir into the folder dest_dir.
Args:
src_dir: gsc or local path.
dest_dir: gcs or local path.
"""
file_io.recursive_create_dir(dest_dir)
for file_name in file_io.list_directory(src_dir):
old_path = os.path.join(src_dir, file_name)
new_path = os.path.join(dest_dir, file_name)
if file_io.is_directory(old_path):
recursive_copy(old_path, new_path)
else:
file_io.copy(old_path, new_path, overwrite=True)
示例3: _serve_bookmarks
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import is_directory [as 別名]
def _serve_bookmarks(self, request):
run = request.args.get('run')
if not run:
return Respond(request, 'query parameter "run" is required', 'text/plain',
400)
name = request.args.get('name')
if name is None:
return Respond(request, 'query parameter "name" is required',
'text/plain', 400)
if run not in self.configs:
return Respond(request, 'Unknown run: "%s"' % run, 'text/plain', 400)
config = self.configs[run]
fpath = self._get_bookmarks_file_for_tensor(name, config)
if not fpath:
return Respond(
request,
'No bookmarks file found for tensor "%s" in the config file "%s"' %
(name, self.config_fpaths[run]), 'text/plain', 400)
fpath = _rel_to_abs_asset_path(fpath, self.config_fpaths[run])
if not file_io.file_exists(fpath) or file_io.is_directory(fpath):
return Respond(request, '"%s" not found, or is not a file' % fpath,
'text/plain', 400)
bookmarks_json = None
with file_io.FileIO(fpath, 'rb') as f:
bookmarks_json = f.read()
return Respond(request, bookmarks_json, 'application/json')
示例4: _serve_sprite_image
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import is_directory [as 別名]
def _serve_sprite_image(self, request):
run = request.args.get('run')
if not run:
return Respond(request, 'query parameter "run" is required', 'text/plain',
400)
name = request.args.get('name')
if name is None:
return Respond(request, 'query parameter "name" is required',
'text/plain', 400)
if run not in self.configs:
return Respond(request, 'Unknown run: "%s"' % run, 'text/plain', 400)
config = self.configs[run]
embedding_info = self._get_embedding(name, config)
if not embedding_info or not embedding_info.sprite.image_path:
return Respond(
request,
'No sprite image file found for tensor "%s" in the config file "%s"' %
(name, self.config_fpaths[run]), 'text/plain', 400)
fpath = os.path.expanduser(embedding_info.sprite.image_path)
fpath = _rel_to_abs_asset_path(fpath, self.config_fpaths[run])
if not file_io.file_exists(fpath) or file_io.is_directory(fpath):
return Respond(request, '"%s" does not exist or is directory' % fpath,
'text/plain', 400)
f = file_io.FileIO(fpath, 'rb')
encoded_image_string = f.read()
f.close()
image_type = imghdr.what(None, encoded_image_string)
mime_type = _IMGHDR_TO_MIMETYPE.get(image_type, _DEFAULT_IMAGE_MIMETYPE)
return Respond(request, encoded_image_string, mime_type)
示例5: _serve_bookmarks
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import is_directory [as 別名]
def _serve_bookmarks(self, request, query_params):
run = query_params.get('run')
if not run:
request.respond('query parameter "run" is required', 'text/plain', 400)
return
name = query_params.get('name')
if name is None:
request.respond('query parameter "name" is required', 'text/plain', 400)
return
if run not in self.configs:
request.respond('Unknown run: %s' % run, 'text/plain', 400)
return
config = self.configs[run]
fpath = self._get_bookmarks_file_for_tensor(name, config)
if not fpath:
request.respond(
'No bookmarks file found for tensor %s in the config file %s' %
(name, self.config_fpaths[run]), 'text/plain', 400)
return
if not file_io.file_exists(fpath) or file_io.is_directory(fpath):
request.respond('%s is not a file' % fpath, 'text/plain', 400)
return
bookmarks_json = None
with file_io.FileIO(fpath, 'r') as f:
bookmarks_json = f.read()
request.respond(bookmarks_json, 'application/json')
示例6: _serve_sprite_image
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import is_directory [as 別名]
def _serve_sprite_image(self, request, query_params):
run = query_params.get('run')
if not run:
request.respond('query parameter "run" is required', 'text/plain', 400)
return
name = query_params.get('name')
if name is None:
request.respond('query parameter "name" is required', 'text/plain', 400)
return
if run not in self.configs:
request.respond('Unknown run: %s' % run, 'text/plain', 400)
return
config = self.configs[run]
embedding_info = self._get_embedding(name, config)
if not embedding_info or not embedding_info.sprite.image_path:
request.respond(
'No sprite image file found for tensor %s in the config file %s' %
(name, self.config_fpaths[run]), 'text/plain', 400)
return
fpath = embedding_info.sprite.image_path
if not file_io.file_exists(fpath) or file_io.is_directory(fpath):
request.respond(
'%s does not exist or is directory' % fpath, 'text/plain', 400)
return
f = file_io.FileIO(fpath, 'r')
encoded_image_string = f.read()
f.close()
image_type = imghdr.what(None, encoded_image_string)
mime_type = _IMGHDR_TO_MIMETYPE.get(image_type, _DEFAULT_IMAGE_MIMETYPE)
request.respond(encoded_image_string, mime_type)
示例7: create_dir_test
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import is_directory [as 別名]
def create_dir_test():
"""Verifies file_io directory handling methods ."""
starttime = int(round(time.time() * 1000))
dir_name = "%s/tf_gcs_test_%s" % (FLAGS.gcs_bucket_url, starttime)
print("Creating dir %s" % dir_name)
file_io.create_dir(dir_name)
elapsed = int(round(time.time() * 1000)) - starttime
print("Created directory in: %d milliseconds" % elapsed)
# Check that the directory exists.
dir_exists = file_io.is_directory(dir_name)
print("%s directory exists: %s" % (dir_name, dir_exists))
# List contents of just created directory.
print("Listing directory %s." % dir_name)
starttime = int(round(time.time() * 1000))
print(file_io.list_directory(dir_name))
elapsed = int(round(time.time() * 1000)) - starttime
print("Listed directory %s in %s milliseconds" % (dir_name, elapsed))
# Delete directory.
print("Deleting directory %s." % dir_name)
starttime = int(round(time.time() * 1000))
file_io.delete_recursively(dir_name)
elapsed = int(round(time.time() * 1000)) - starttime
print("Deleted directory %s in %s milliseconds" % (dir_name, elapsed))
示例8: _serve_metadata
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import is_directory [as 別名]
def _serve_metadata(self, request):
run = request.args.get('run')
if run is None:
return Respond(request, 'query parameter "run" is required', 'text/plain',
400)
name = request.args.get('name')
if name is None:
return Respond(request, 'query parameter "name" is required',
'text/plain', 400)
num_rows = _parse_positive_int_param(request, 'num_rows')
if num_rows == -1:
return Respond(request, 'query parameter num_rows must be integer > 0',
'text/plain', 400)
if run not in self.configs:
return Respond(request, 'Unknown run: "%s"' % run, 'text/plain', 400)
config = self.configs[run]
fpath = self._get_metadata_file_for_tensor(name, config)
if not fpath:
return Respond(
request,
'No metadata file found for tensor "%s" in the config file "%s"' %
(name, self.config_fpaths[run]), 'text/plain', 400)
fpath = _rel_to_abs_asset_path(fpath, self.config_fpaths[run])
if not file_io.file_exists(fpath) or file_io.is_directory(fpath):
return Respond(request, '"%s" not found, or is not a file' % fpath,
'text/plain', 400)
num_header_rows = 0
with file_io.FileIO(fpath, 'r') as f:
lines = []
# Stream reading the file with early break in case the file doesn't fit in
# memory.
for line in f:
lines.append(line)
if len(lines) == 1 and '\t' in lines[0]:
num_header_rows = 1
if num_rows and len(lines) >= num_rows + num_header_rows:
break
return Respond(request, ''.join(lines), 'text/plain')
示例9: _serve_metadata
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import is_directory [as 別名]
def _serve_metadata(self, request, query_params):
run = query_params.get('run')
if run is None:
request.respond('query parameter "run" is required', 'text/plain', 400)
return
name = query_params.get('name')
if name is None:
request.respond('query parameter "name" is required', 'text/plain', 400)
return
num_rows = _parse_positive_int_param(request, query_params, 'num_rows')
if num_rows == -1:
return
if run not in self.configs:
request.respond('Unknown run: %s' % run, 'text/plain', 400)
return
config = self.configs[run]
fpath = self._get_metadata_file_for_tensor(name, config)
if not fpath:
request.respond(
'No metadata file found for tensor %s in the config file %s' %
(name, self.config_fpaths[run]), 'text/plain', 400)
return
if not file_io.file_exists(fpath) or file_io.is_directory(fpath):
request.respond('%s is not a file' % fpath, 'text/plain', 400)
return
num_header_rows = 0
with file_io.FileIO(fpath, 'r') as f:
lines = []
# Stream reading the file with early break in case the file doesn't fit in
# memory.
for line in f:
lines.append(line)
if len(lines) == 1 and '\t' in lines[0]:
num_header_rows = 1
if num_rows and len(lines) >= num_rows + num_header_rows:
break
request.respond(''.join(lines), 'text/plain')