本文整理匯總了Python中tensorflow.python.lib.io.file_io.create_dir方法的典型用法代碼示例。如果您正苦於以下問題:Python file_io.create_dir方法的具體用法?Python file_io.create_dir怎麽用?Python file_io.create_dir使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.lib.io.file_io
的用法示例。
在下文中一共展示了file_io.create_dir方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_dir_test
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import create_dir [as 別名]
def create_dir_test():
"""Verifies file_io directory handling methods ."""
starttime = int(round(time.time() * 1000))
dir_name = "%s/tf_gcs_test_%s" % (FLAGS.gcs_bucket_url, starttime)
print("Creating dir %s" % dir_name)
file_io.create_dir(dir_name)
elapsed = int(round(time.time() * 1000)) - starttime
print("Created directory in: %d milliseconds" % elapsed)
# Check that the directory exists.
dir_exists = file_io.is_directory(dir_name)
print("%s directory exists: %s" % (dir_name, dir_exists))
# List contents of just created directory.
print("Listing directory %s." % dir_name)
starttime = int(round(time.time() * 1000))
print(file_io.list_directory(dir_name))
elapsed = int(round(time.time() * 1000)) - starttime
print("Listed directory %s in %s milliseconds" % (dir_name, elapsed))
# Delete directory.
print("Deleting directory %s." % dir_name)
starttime = int(round(time.time() * 1000))
file_io.delete_recursively(dir_name)
elapsed = int(round(time.time() * 1000)) - starttime
print("Deleted directory %s in %s milliseconds" % (dir_name, elapsed))
示例2: create_object_test
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import create_dir [as 別名]
def create_object_test():
"""Verifies file_io's object manipulation methods ."""
starttime = int(round(time.time() * 1000))
dir_name = "%s/tf_gcs_test_%s" % (FLAGS.gcs_bucket_url, starttime)
print("Creating dir %s." % dir_name)
file_io.create_dir(dir_name)
# Create a file in this directory.
file_name = "%s/test_file.txt" % dir_name
print("Creating file %s." % file_name)
file_io.write_string_to_file(file_name, "test file creation.")
list_files_pattern = "%s/test_file*.txt" % dir_name
print("Getting files matching pattern %s." % list_files_pattern)
files_list = file_io.get_matching_files(list_files_pattern)
print(files_list)
assert len(files_list) == 1
assert files_list[0] == file_name
# Cleanup test files.
print("Deleting file %s." % file_name)
file_io.delete_file(file_name)
# Delete directory.
print("Deleting directory %s." % dir_name)
file_io.delete_recursively(dir_name)
示例3: setUpClass
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import create_dir [as 別名]
def setUpClass(cls):
# Set up dirs.
cls.working_dir = tempfile.mkdtemp()
cls.source_dir = os.path.join(cls.working_dir, 'source')
cls.analysis_dir = os.path.join(cls.working_dir, 'analysis')
cls.output_dir = os.path.join(cls.working_dir, 'output')
file_io.create_dir(cls.source_dir)
# Make test image files.
img1_file = os.path.join(cls.source_dir, 'img1.jpg')
image1 = Image.new('RGB', size=(300, 300), color=(155, 0, 0))
image1.save(img1_file)
img2_file = os.path.join(cls.source_dir, 'img2.jpg')
image2 = Image.new('RGB', size=(50, 50), color=(125, 240, 0))
image2.save(img2_file)
img3_file = os.path.join(cls.source_dir, 'img3.jpg')
image3 = Image.new('RGB', size=(800, 600), color=(33, 55, 77))
image3.save(img3_file)
# Download inception checkpoint. Note that gs url doesn't work because
# we may not have gcloud signed in when running the test.
url = ('https://storage.googleapis.com/cloud-ml-data/img/' +
'flower_photos/inception_v3_2016_08_28.ckpt')
checkpoint_path = os.path.join(cls.working_dir, "checkpoint")
response = urlopen(url)
with open(checkpoint_path, 'wb') as f:
f.write(response.read())
# Make csv input file
cls.csv_input_filepath = os.path.join(cls.source_dir, 'input.csv')
file_io.write_string_to_file(
cls.csv_input_filepath,
'1,Monday,23.0,red blue,%s\n' % img1_file +
'0,Friday,18.0,green,%s\n' % img2_file +
'0,Sunday,12.0,green red blue green,%s\n' % img3_file)
# Call analyze.py to create analysis results.
schema = [{'name': 'target_col', 'type': 'FLOAT'},
{'name': 'cat_col', 'type': 'STRING'},
{'name': 'num_col', 'type': 'FLOAT'},
{'name': 'text_col', 'type': 'STRING'},
{'name': 'img_col', 'type': 'STRING'}]
schema_file = os.path.join(cls.source_dir, 'schema.json')
file_io.write_string_to_file(schema_file, json.dumps(schema))
features = {'target_col': {'transform': 'target'},
'cat_col': {'transform': 'one_hot'},
'num_col': {'transform': 'identity'},
'text_col': {'transform': 'multi_hot'},
'img_col': {'transform': 'image_to_vec', 'checkpoint': checkpoint_path}}
features_file = os.path.join(cls.source_dir, 'features.json')
file_io.write_string_to_file(features_file, json.dumps(features))
cmd = ['python ' + os.path.join(CODE_PATH, 'analyze.py'),
'--output=' + cls.analysis_dir,
'--csv=' + cls.csv_input_filepath,
'--schema=' + schema_file,
'--features=' + features_file]
subprocess.check_call(' '.join(cmd), shell=True)
示例4: setUpClass
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import create_dir [as 別名]
def setUpClass(cls):
# Set up dirs.
cls.working_dir = tempfile.mkdtemp()
cls.source_dir = os.path.join(cls.working_dir, 'source')
cls.analysis_dir = os.path.join(cls.working_dir, 'analysis')
cls.output_dir = os.path.join(cls.working_dir, 'output')
file_io.create_dir(cls.source_dir)
# Make test image files.
img1_file = os.path.join(cls.source_dir, 'img1.jpg')
image1 = Image.new('RGB', size=(300, 300), color=(155, 0, 0))
image1.save(img1_file)
img2_file = os.path.join(cls.source_dir, 'img2.jpg')
image2 = Image.new('RGB', size=(50, 50), color=(125, 240, 0))
image2.save(img2_file)
img3_file = os.path.join(cls.source_dir, 'img3.jpg')
image3 = Image.new('RGB', size=(800, 600), color=(33, 55, 77))
image3.save(img3_file)
# Download inception checkpoint. Note that gs url doesn't work because
# we may not have gcloud signed in when running the test.
url = ('https://storage.googleapis.com/cloud-ml-data/img/' +
'flower_photos/inception_v3_2016_08_28.ckpt')
checkpoint_path = os.path.join(cls.working_dir, "checkpoint")
response = urlopen(url)
with open(checkpoint_path, 'wb') as f:
f.write(response.read())
# Make csv input file
cls.csv_input_filepath = os.path.join(cls.source_dir, 'input.csv')
file_io.write_string_to_file(
cls.csv_input_filepath,
'1,1,Monday,23.0,%s\n' % img1_file +
'2,0,Friday,18.0,%s\n' % img2_file +
'3,0,Sunday,12.0,%s\n' % img3_file)
# Call analyze.py to create analysis results.
schema = [{'name': 'key_col', 'type': 'INTEGER'},
{'name': 'target_col', 'type': 'FLOAT'},
{'name': 'cat_col', 'type': 'STRING'},
{'name': 'num_col', 'type': 'FLOAT'},
{'name': 'img_col', 'type': 'STRING'}]
schema_file = os.path.join(cls.source_dir, 'schema.json')
file_io.write_string_to_file(schema_file, json.dumps(schema))
features = {'key_col': {'transform': 'key'},
'target_col': {'transform': 'target'},
'cat_col': {'transform': 'one_hot'},
'num_col': {'transform': 'identity'},
'img_col': {'transform': 'image_to_vec', 'checkpoint': checkpoint_path}}
features_file = os.path.join(cls.source_dir, 'features.json')
file_io.write_string_to_file(features_file, json.dumps(features))
cmd = ['python ' + os.path.join(CODE_PATH, 'analyze.py'),
'--output=' + cls.analysis_dir,
'--csv=' + cls.csv_input_filepath,
'--schema=' + schema_file,
'--features=' + features_file]
subprocess.check_call(' '.join(cmd), shell=True)