本文整理匯總了Python中tensorflow.python.lib.io.file_io.copy方法的典型用法代碼示例。如果您正苦於以下問題:Python file_io.copy方法的具體用法?Python file_io.copy怎麽用?Python file_io.copy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.lib.io.file_io
的用法示例。
在下文中一共展示了file_io.copy方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _recursive_copy
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import copy [as 別名]
def _recursive_copy(src_dir, dest_dir):
"""Copy the contents of src_dir into the folder dest_dir.
Args:
src_dir: gsc or local path.
dest_dir: gcs or local path.
When called, dest_dir should exist.
"""
src_dir = python_portable_string(src_dir)
dest_dir = python_portable_string(dest_dir)
file_io.recursive_create_dir(dest_dir)
for file_name in file_io.list_directory(src_dir):
old_path = os.path.join(src_dir, file_name)
new_path = os.path.join(dest_dir, file_name)
if file_io.is_directory(old_path):
_recursive_copy(old_path, new_path)
else:
file_io.copy(old_path, new_path, overwrite=True)
示例2: recursive_copy
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import copy [as 別名]
def recursive_copy(src_dir, dest_dir):
"""Copy the contents of src_dir into the folder dest_dir.
Args:
src_dir: gsc or local path.
dest_dir: gcs or local path.
"""
file_io.recursive_create_dir(dest_dir)
for file_name in file_io.list_directory(src_dir):
old_path = os.path.join(src_dir, file_name)
new_path = os.path.join(dest_dir, file_name)
if file_io.is_directory(old_path):
recursive_copy(old_path, new_path)
else:
file_io.copy(old_path, new_path, overwrite=True)
示例3: _save_and_write_assets
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import copy [as 別名]
def _save_and_write_assets(self, assets_collection_to_add=None):
"""Saves asset to the meta graph and writes asset files to disk.
Args:
assets_collection_to_add: The collection where the asset paths are setup.
"""
asset_source_filepath_list = _maybe_save_assets(assets_collection_to_add)
# Return if there are no assets to write.
if len(asset_source_filepath_list) is 0:
tf_logging.info("No assets to write.")
return
assets_destination_dir = os.path.join(
compat.as_bytes(self._export_dir),
compat.as_bytes(constants.ASSETS_DIRECTORY))
if not file_io.file_exists(assets_destination_dir):
file_io.recursive_create_dir(assets_destination_dir)
# Copy each asset from source path to destination path.
for asset_source_filepath in asset_source_filepath_list:
asset_source_filename = os.path.basename(asset_source_filepath)
asset_destination_filepath = os.path.join(
compat.as_bytes(assets_destination_dir),
compat.as_bytes(asset_source_filename))
# Only copy the asset file to the destination if it does not already
# exist. This is to ensure that an asset with the same name defined as
# part of multiple graphs is only copied the first time.
if not file_io.file_exists(asset_destination_filepath):
file_io.copy(asset_source_filepath, asset_destination_filepath)
tf_logging.info("Assets written to: %s", assets_destination_dir)
示例4: _save_and_write_assets
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import copy [as 別名]
def _save_and_write_assets(self, assets_collection_to_add=None):
"""Saves asset to the meta graph and writes asset files to disk.
Args:
assets_collection_to_add: The collection where the asset paths are setup.
"""
asset_source_filepath_list = self._maybe_save_assets(
assets_collection_to_add)
# Return if there are no assets to write.
if len(asset_source_filepath_list) is 0:
tf_logging.info("No assets to write.")
return
assets_destination_dir = os.path.join(
compat.as_bytes(self._export_dir),
compat.as_bytes(constants.ASSETS_DIRECTORY))
if not file_io.file_exists(assets_destination_dir):
file_io.recursive_create_dir(assets_destination_dir)
# Copy each asset from source path to destination path.
for asset_source_filepath in asset_source_filepath_list:
asset_source_filename = os.path.basename(asset_source_filepath)
asset_destination_filepath = os.path.join(
compat.as_bytes(assets_destination_dir),
compat.as_bytes(asset_source_filename))
# Only copy the asset file to the destination if it does not already
# exist. This is to ensure that an asset with the same name defined as
# part of multiple graphs is only copied the first time.
if not file_io.file_exists(asset_destination_filepath):
file_io.copy(asset_source_filepath, asset_destination_filepath)
tf_logging.info("Assets written to: %s", assets_destination_dir)
示例5: run_analysis
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import copy [as 別名]
def run_analysis(args):
"""Builds an analysis files for training."""
# Read the schema and input feature types
schema_list = json.loads(
file_io.read_file_to_string(args.schema_file))
run_numerical_categorical_analysis(args, schema_list)
# Also save a copy of the schema in the output folder.
file_io.copy(args.schema_file,
os.path.join(args.output_dir, SCHEMA_FILE),
overwrite=True)
示例6: main
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import copy [as 別名]
def main(argv=None):
args = parse_arguments(sys.argv if argv is None else argv)
if args.cloud:
tmpdir = tempfile.mkdtemp()
try:
local_packages = [os.path.join(tmpdir, os.path.basename(p)) for p in args.extra_package]
for source, dest in zip(args.extra_package, local_packages):
file_io.copy(source, dest, overwrite=True)
options = {
'staging_location': os.path.join(args.output_dir, 'tmp', 'staging'),
'temp_location': os.path.join(args.output_dir, 'tmp', 'staging'),
'job_name': args.job_name,
'project': args.project_id,
'no_save_main_session': True,
'extra_packages': local_packages,
'teardown_policy': 'TEARDOWN_ALWAYS',
}
opts = beam.pipeline.PipelineOptions(flags=[], **options)
# Or use BlockingDataflowPipelineRunner
p = beam.Pipeline('DataflowRunner', options=opts)
make_prediction_pipeline(p, args)
print(('Dataflow Job submitted, see Job %s at '
'https://console.developers.google.com/dataflow?project=%s') %
(options['job_name'], args.project_id))
sys.stdout.flush()
runner_results = p.run()
finally:
shutil.rmtree(tmpdir)
else:
p = beam.Pipeline('DirectRunner')
make_prediction_pipeline(p, args)
runner_results = p.run()
return runner_results
示例7: preprocess
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import copy [as 別名]
def preprocess(train_dataset, output_dir, eval_dataset, checkpoint, pipeline_option):
"""Preprocess data in Cloud with DataFlow."""
import apache_beam as beam
import google.datalab.utils
from . import _preprocess
if checkpoint is None:
checkpoint = _util._DEFAULT_CHECKPOINT_GSURL
job_name = ('preprocess-image-classification-' +
datetime.datetime.now().strftime('%y%m%d-%H%M%S'))
staging_package_url = _util.repackage_to_staging(output_dir)
tmpdir = tempfile.mkdtemp()
# suppress DataFlow warnings about wheel package as extra package.
original_level = logging.getLogger().getEffectiveLevel()
logging.getLogger().setLevel(logging.ERROR)
try:
# Workaround for DataFlow 2.0, which doesn't work well with extra packages in GCS.
# Remove when the issue is fixed and new version of DataFlow is included in Datalab.
extra_packages = [staging_package_url, _TF_GS_URL, _PROTOBUF_GS_URL]
local_packages = [os.path.join(tmpdir, os.path.basename(p))
for p in extra_packages]
for source, dest in zip(extra_packages, local_packages):
file_io.copy(source, dest, overwrite=True)
options = {
'staging_location': os.path.join(output_dir, 'tmp', 'staging'),
'temp_location': os.path.join(output_dir, 'tmp'),
'job_name': job_name,
'project': _util.default_project(),
'extra_packages': local_packages,
'teardown_policy': 'TEARDOWN_ALWAYS',
'no_save_main_session': True
}
if pipeline_option is not None:
options.update(pipeline_option)
opts = beam.pipeline.PipelineOptions(flags=[], **options)
p = beam.Pipeline('DataflowRunner', options=opts)
_preprocess.configure_pipeline(p, train_dataset, eval_dataset,
checkpoint, output_dir, job_name)
job_results = p.run()
finally:
shutil.rmtree(tmpdir)
logging.getLogger().setLevel(original_level)
if (_util.is_in_IPython()):
import IPython
dataflow_url = 'https://console.developers.google.com/dataflow?project=%s' % \
_util.default_project()
html = 'Job "%s" submitted.' % job_name
html += '<p>Click <a href="%s" target="_blank">here</a> to track preprocessing job. <br/>' \
% dataflow_url
IPython.display.display_html(html, raw=True)
return google.datalab.utils.DataflowJob(job_results)
示例8: batch_predict
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import copy [as 別名]
def batch_predict(dataset, model_dir, output_csv, output_bq_table, pipeline_option):
"""Batch predict running in cloud."""
import apache_beam as beam
import google.datalab.utils
from . import _predictor
if output_csv is None and output_bq_table is None:
raise ValueError('output_csv and output_bq_table cannot both be None.')
if 'temp_location' not in pipeline_option:
raise ValueError('"temp_location" is not set in cloud.')
job_name = ('batch-predict-image-classification-' +
datetime.datetime.now().strftime('%y%m%d-%H%M%S'))
staging_package_url = _util.repackage_to_staging(pipeline_option['temp_location'])
tmpdir = tempfile.mkdtemp()
# suppress DataFlow warnings about wheel package as extra package.
original_level = logging.getLogger().getEffectiveLevel()
logging.getLogger().setLevel(logging.ERROR)
try:
# Workaround for DataFlow 2.0, which doesn't work well with extra packages in GCS.
# Remove when the issue is fixed and new version of DataFlow is included in Datalab.
extra_packages = [staging_package_url, _TF_GS_URL, _PROTOBUF_GS_URL]
local_packages = [os.path.join(tmpdir, os.path.basename(p))
for p in extra_packages]
for source, dest in zip(extra_packages, local_packages):
file_io.copy(source, dest, overwrite=True)
options = {
'staging_location': os.path.join(pipeline_option['temp_location'], 'staging'),
'job_name': job_name,
'project': _util.default_project(),
'extra_packages': local_packages,
'teardown_policy': 'TEARDOWN_ALWAYS',
'no_save_main_session': True
}
options.update(pipeline_option)
opts = beam.pipeline.PipelineOptions(flags=[], **options)
p = beam.Pipeline('DataflowRunner', options=opts)
_predictor.configure_pipeline(p, dataset, model_dir, output_csv, output_bq_table)
job_results = p.run()
finally:
shutil.rmtree(tmpdir)
logging.getLogger().setLevel(original_level)
if (_util.is_in_IPython()):
import IPython
dataflow_url = ('https://console.developers.google.com/dataflow?project=%s' %
_util.default_project())
html = 'Job "%s" submitted.' % job_name
html += ('<p>Click <a href="%s" target="_blank">here</a> to track batch prediction job. <br/>'
% dataflow_url)
IPython.display.display_html(html, raw=True)
return google.datalab.utils.DataflowJob(job_results)
示例9: datahtml
# 需要導入模塊: from tensorflow.python.lib.io import file_io [as 別名]
# 或者: from tensorflow.python.lib.io.file_io import copy [as 別名]
def datahtml(
bucket_name,
commit_sha,
train_file_path
):
import json
import seaborn as sns
import matplotlib.pyplot as plt
import os
image_path = os.path.join(bucket_name, commit_sha, 'visualization.png')
image_url = os.path.join('https://storage.googleapis.com', bucket_name.lstrip('gs://'), commit_sha, 'visualization.png')
html_path = os.path.join(bucket_name, 'kaggle.html')
# ouptut visualization to a file
import pandas as pd
df_train = pd.read_csv(train_file_path)
sns.set()
cols = ['SalePrice', 'OverallQual', 'GrLivArea', 'GarageCars', 'TotalBsmtSF', 'FullBath', 'YearBuilt']
sns.pairplot(df_train[cols], size = 3)
plt.savefig('visualization.png')
from tensorflow.python.lib.io import file_io
file_io.copy('visualization.png', image_path)
rendered_template = """
<html>
<head>
<title>correlation image</title>
</head>
<body>
<img src={}>
</body>
</html>""".format(image_url)
file_io.write_string_to_file(html_path, rendered_template)
metadata = {
'outputs' : [{
'type': 'web-app',
'storage': 'gcs',
'source': html_path,
}]
}
with file_io.FileIO('/mlpipeline-ui-metadata.json', 'w') as f:
json.dump(metadata, f)