當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.smart_cond方法代碼示例

本文整理匯總了Python中tensorflow.python.layers.utils.smart_cond方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.smart_cond方法的具體用法?Python utils.smart_cond怎麽用?Python utils.smart_cond使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.layers.utils的用法示例。


在下文中一共展示了utils.smart_cond方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_image_resize_method

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def get_image_resize_method(resize_method, batch_position=0):
  """Get tensorflow resize method.

  If resize_method is 'round_robin', return different methods based on batch
  position in a round-robin fashion. NOTE: If the batch size is not a multiple
  of the number of methods, then the distribution of methods will not be
  uniform.

  Args:
    resize_method: (string) nearest, bilinear, bicubic, area, or round_robin.
    batch_position: position of the image in a batch. NOTE: this argument can
      be an integer or a tensor
  Returns:
    one of resize type defined in tf.image.ResizeMethod.
  """

  if resize_method != 'round_robin':
    return _RESIZE_METHOD_MAP[resize_method]

  # return a resize method based on batch position in a round-robin fashion.
  resize_methods = list(_RESIZE_METHOD_MAP.values())
  def lookup(index):
    return resize_methods[index]

  def resize_method_0():
    return utils.smart_cond(batch_position % len(resize_methods) == 0,
                            lambda: lookup(0), resize_method_1)

  def resize_method_1():
    return utils.smart_cond(batch_position % len(resize_methods) == 1,
                            lambda: lookup(1), resize_method_2)

  def resize_method_2():
    return utils.smart_cond(batch_position % len(resize_methods) == 2,
                            lambda: lookup(2), lambda: lookup(3))

  # NOTE(jsimsa): Unfortunately, we cannot use a single recursive function here
  # because TF would not be able to construct a finite graph.

  return resize_method_0() 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:42,代碼來源:preprocessing.py

示例2: call

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def call(self, inputs, training=False):
    def dropped_inputs():
      return nn.dropout(inputs, 1  - self.rate,
                        noise_shape=self._get_noise_shape(inputs),
                        seed=self.seed)
    return utils.smart_cond(training,
                            dropped_inputs,
                            lambda: array_ops.identity(inputs)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:10,代碼來源:core.py

示例3: _smart_select

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def _smart_select(pred, fn_then, fn_else):
  """Selects fn_then() or fn_else() based on the value of pred.

  The purpose of this function is the same as `utils.smart_cond`. However, at
  the moment there is a bug (b/36297356) that seems to kick in only when
  `smart_cond` delegates to `tf.cond`, which sometimes results in the training
  hanging when using parameter servers. This function will output the result
  of `fn_then` or `fn_else` if `pred` is known at graph construction time.
  Otherwise, it will use `tf.where` which will result in some redundant work
  (both branches will be computed but only one selected). However, the tensors
  involved will usually be small (means and variances in batchnorm), so the
  cost will be small and will not be incurred at all if `pred` is a constant.

  Args:
    pred: A boolean scalar `Tensor`.
    fn_then: A callable to use when pred==True.
    fn_else: A callable to use when pred==False.

  Returns:
    A `Tensor` whose value is fn_then() or fn_else() based on the value of pred.
  """
  pred_value = utils.constant_value(pred)
  if pred_value:
    return fn_then()
  elif pred_value is False:
    return fn_else()
  t_then = array_ops.expand_dims(fn_then(), 0)
  t_else = array_ops.expand_dims(fn_else(), 0)
  pred = array_ops.reshape(pred, [1])
  result = array_ops.where(pred, t_then, t_else)
  return array_ops.squeeze(result, [0]) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:33,代碼來源:normalization.py

示例4: call

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def call(self, inputs, training=False):
    def dropped_inputs():
      return nn.dropout(inputs, 1  - self.rate,
                        noise_shape=self.noise_shape,
                        seed=self.seed)
    return utils.smart_cond(training,
                            dropped_inputs,
                            lambda: array_ops.identity(inputs)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:10,代碼來源:core.py

示例5: dropout_selu

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def dropout_selu(x, rate, alpha= -1.7580993408473766, fixedPointMean=0.0, fixedPointVar=1.0,
                 noise_shape=None, seed=None, name=None, training=False):
    """Dropout to a value with rescaling."""

    def dropout_selu_impl(x, rate, alpha, noise_shape, seed, name):
        keep_prob = 1.0 - rate
        x = ops.convert_to_tensor(x, name="x")
        if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1:
            raise ValueError("keep_prob must be a scalar tensor or a float in the "
                                             "range (0, 1], got %g" % keep_prob)
        keep_prob = ops.convert_to_tensor(keep_prob, dtype=x.dtype, name="keep_prob")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        alpha = ops.convert_to_tensor(alpha, dtype=x.dtype, name="alpha")
        alpha.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        if tensor_util.constant_value(keep_prob) == 1:
            return x

        noise_shape = noise_shape if noise_shape is not None else array_ops.shape(x)
        random_tensor = keep_prob
        random_tensor += random_ops.random_uniform(noise_shape, seed=seed, dtype=x.dtype)
        binary_tensor = math_ops.floor(random_tensor)
        ret = x * binary_tensor + alpha * (1-binary_tensor)

        a = math_ops.sqrt(fixedPointVar / (keep_prob *((1-keep_prob) * math_ops.pow(alpha-fixedPointMean,2) + fixedPointVar)))

        b = fixedPointMean - a * (keep_prob * fixedPointMean + (1 - keep_prob) * alpha)
        ret = a * ret + b
        ret.set_shape(x.get_shape())
        return ret

    with ops.name_scope(name, "dropout", [x]) as name:
        return utils.smart_cond(training,
            lambda: dropout_selu_impl(x, rate, alpha, noise_shape, seed, name),
            lambda: array_ops.identity(x)) 
開發者ID:yyht,項目名稱:BERT,代碼行數:38,代碼來源:general.py

示例6: dropout_selu

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def dropout_selu(x, rate, alpha=-1.7580993408473766, fixedPointMean=0.0, fixedPointVar=1.0,
                 noise_shape=None, seed=None, name=None, training=False):
    """Dropout to a value with rescaling."""

    def dropout_selu_impl(x, rate, alpha, noise_shape, seed, name):
        keep_prob = 1.0 - rate
        x = ops.convert_to_tensor(x, name="x")
        if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1:
            raise ValueError("keep_prob must be a scalar tensor or a float in the "
                                             "range (0, 1], got %g" % keep_prob)
        keep_prob = ops.convert_to_tensor(keep_prob, dtype=x.dtype, name="keep_prob")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        alpha = ops.convert_to_tensor(alpha, dtype=x.dtype, name="alpha")
        alpha.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        if tensor_util.constant_value(keep_prob) == 1:
            return x

        noise_shape = noise_shape if noise_shape is not None else array_ops.shape(x)
        random_tensor = keep_prob
        random_tensor += random_ops.random_uniform(noise_shape, seed=seed, dtype=x.dtype)
        binary_tensor = math_ops.floor(random_tensor)
        ret = x * binary_tensor + alpha * (1-binary_tensor)

        a = math_ops.sqrt(fixedPointVar / (keep_prob *((1-keep_prob) * math_ops.pow(alpha-fixedPointMean,2) + fixedPointVar)))

        b = fixedPointMean - a * (keep_prob * fixedPointMean + (1 - keep_prob) * alpha)
        ret = a * ret + b
        ret.set_shape(x.get_shape())
        return ret

    with ops.name_scope(name, "dropout", [x]) as name:
        return utils.smart_cond(training,
            lambda: dropout_selu_impl(x, rate, alpha, noise_shape, seed, name),
            lambda: array_ops.identity(x)) 
開發者ID:uclnlp,項目名稱:inferbeddings,代碼行數:38,代碼來源:basic.py

示例7: dropout_selu

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def dropout_selu(x, rate, alpha=-1.7580993408473766, fixed_point_mean=0.0, fixed_point_var=1.0, noise_shape=None,
                 seed=None, name=None, training=False):

    """Dropout to a value with rescaling."""
    def dropout_selu_impl(x, rate, alpha, noise_shape, seed, name):
        keep_prob = 1.0 - rate
        x = ops.convert_to_tensor(x, name="x")
        if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1:
            raise ValueError("keep_prob must be a scalar tensor or a float in the "
                             "range (0, 1], got %g" % keep_prob)
        keep_prob = ops.convert_to_tensor(keep_prob, dtype=x.dtype, name="keep_prob")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())
        alpha = ops.convert_to_tensor(alpha, dtype=x.dtype, name="alpha")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())
        if tensor_util.constant_value(keep_prob) == 1:
            return x
        noise_shape = noise_shape if noise_shape is not None else array_ops.shape(x)
        random_tensor = keep_prob
        random_tensor += random_ops.random_uniform(noise_shape, seed=seed, dtype=x.dtype)
        binary_tensor = math_ops.floor(random_tensor)
        ret = x * binary_tensor + alpha * (1 - binary_tensor)
        a = tf.sqrt(fixed_point_var / (keep_prob * ((1 - keep_prob) * tf.pow(alpha - fixed_point_mean, 2) + fixed_point_var)))
        b = fixed_point_mean - a * (keep_prob * fixed_point_mean + (1 - keep_prob) * alpha)
        ret = a * ret + b
        ret.set_shape(x.get_shape())
        return ret

    with ops.name_scope(name, "dropout", [x]) as name:
        return utils.smart_cond(training, lambda: dropout_selu_impl(x, rate, alpha, noise_shape, seed, name),
                                lambda: array_ops.identity(x))


# (3) Input data scaled to zero mean and unit variance
# (1) Scale input to zero mean and unit variance 
開發者ID:IsaacChanghau,項目名稱:AmusingPythonCodes,代碼行數:36,代碼來源:snns_mlp_mnist.py

示例8: dropout_selu

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def dropout_selu(x, rate, alpha=-1.7580993408473766, fixedPointMean=0.0, fixedPointVar=1.0, noise_shape=None, seed=None,
                 name=None, training=False):

    """Dropout to a value with rescaling."""
    def dropout_selu_impl(x, rate, alpha, noise_shape, seed, name):
        keep_prob = 1.0 - rate
        x = ops.convert_to_tensor(x, name="x")
        if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1:
            raise ValueError("keep_prob must be a scalar tensor or a float in the range (0, 1], got %g" % keep_prob)
        keep_prob = ops.convert_to_tensor(keep_prob, dtype=x.dtype, name="keep_prob")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        alpha = ops.convert_to_tensor(alpha, dtype=x.dtype, name="alpha")
        alpha.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        if tensor_util.constant_value(keep_prob) == 1:
            return x

        noise_shape = noise_shape if noise_shape is not None else array_ops.shape(x)
        random_tensor = keep_prob
        random_tensor += random_ops.random_uniform(noise_shape, seed=seed, dtype=x.dtype)
        binary_tensor = math_ops.floor(random_tensor)
        ret = x * binary_tensor + alpha * (1 - binary_tensor)

        a = math_ops.sqrt(
            fixedPointVar / (keep_prob * ((1 - keep_prob) * math_ops.pow(alpha - fixedPointMean, 2) + fixedPointVar)))

        b = fixedPointMean - a * (keep_prob * fixedPointMean + (1 - keep_prob) * alpha)
        ret = a * ret + b
        ret.set_shape(x.get_shape())
        return ret

    with ops.name_scope(name, "dropout", [x]) as name:
        return utils.smart_cond(training, lambda: dropout_selu_impl(x, rate, alpha, noise_shape, seed, name),
                                lambda: array_ops.identity(x)) 
開發者ID:IsaacChanghau,項目名稱:AmusingPythonCodes,代碼行數:37,代碼來源:selu.py

示例9: dropout_selu

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def dropout_selu(x, rate, alpha=-1.7580993408473766, fixedPointMean=0.0, fixedPointVar=1.0,
                 noise_shape=None, seed=None, name=None, training=False):
    """Dropout to a value with rescaling."""

    def dropout_selu_impl(x, rate, alpha, noise_shape, seed, name):
        keep_prob = 1.0 - rate
        x = ops.convert_to_tensor(x, name="x")
        if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1:
            raise ValueError("keep_prob must be a scalar tensor or a float in the range (0, 1], got %g" % keep_prob)
        keep_prob = ops.convert_to_tensor(keep_prob, dtype=x.dtype, name="keep_prob")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())
        alpha = ops.convert_to_tensor(alpha, dtype=x.dtype, name="alpha")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())
        if tensor_util.constant_value(keep_prob) == 1:
            return x
        noise_shape = noise_shape if noise_shape is not None else array_ops.shape(x)
        random_tensor = keep_prob
        random_tensor += random_ops.random_uniform(noise_shape, seed=seed, dtype=x.dtype)
        binary_tensor = math_ops.floor(random_tensor)
        ret = x * binary_tensor + alpha * (1 - binary_tensor)
        a = tf.sqrt(fixedPointVar / (keep_prob * ((1 - keep_prob) * tf.pow(alpha - fixedPointMean, 2) + fixedPointVar)))
        b = fixedPointMean - a * (keep_prob * fixedPointMean + (1 - keep_prob) * alpha)
        ret = a * ret + b
        ret.set_shape(x.get_shape())
        return ret

    with ops.name_scope(name, "dropout", [x]) as name:
        return utils.smart_cond(training, lambda: dropout_selu_impl(x, rate, alpha, noise_shape, seed, name),
                                lambda: array_ops.identity(x))


# (3) Scale input to zero mean and unit variance 
開發者ID:IsaacChanghau,項目名稱:AmusingPythonCodes,代碼行數:34,代碼來源:snns_cnn_mnist.py

示例10: dropout_selu

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def dropout_selu(x, rate, alpha= -1.7580993408473766, fixedPointMean=0.0, fixedPointVar=1.0,
                 noise_shape=None, seed=None, name=None, training=False):
    """Dropout to a value with rescaling."""

    def dropout_selu_impl(x, rate, alpha, noise_shape, seed, name):
        keep_prob = 1.0 - rate
        x = ops.convert_to_tensor(x, name="x")
        if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1:
            raise ValueError("keep_prob must be a scalar tensor or a float in the "
                                             "range (0, 1], got %g" % keep_prob)
        keep_prob = ops.convert_to_tensor(keep_prob, dtype=x.dtype, name="keep_prob")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        alpha = ops.convert_to_tensor(alpha, dtype=x.dtype, name="alpha")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        if tensor_util.constant_value(keep_prob) == 1:
            return x

        noise_shape = noise_shape if noise_shape is not None else array_ops.shape(x)
        random_tensor = keep_prob
        random_tensor += random_ops.random_uniform(noise_shape, seed=seed, dtype=x.dtype)
        binary_tensor = math_ops.floor(random_tensor)
        ret = x * binary_tensor + alpha * (1-binary_tensor)

        a = math_ops.sqrt(fixedPointVar / (keep_prob *((1-keep_prob) * math_ops.pow(alpha-fixedPointMean,2) + fixedPointVar)))

        b = fixedPointMean - a * (keep_prob * fixedPointMean + (1 - keep_prob) * alpha)
        ret = a * ret + b
        ret.set_shape(x.get_shape())
        return ret

    with ops.name_scope(name, "dropout", [x]) as name:
        return utils.smart_cond(training,
            lambda: dropout_selu_impl(x, rate, alpha, noise_shape, seed, name),
            lambda: array_ops.identity(x)) 
開發者ID:IsaacChanghau,項目名稱:AmusingPythonCodes,代碼行數:38,代碼來源:utils.py

示例11: dropout_selu

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def dropout_selu(x, rate, alpha=-my_alpha * my_lambda, fixed_point_mean=my_fixed_point_mean,
                 fixed_point_var=my_fixed_point_var, noise_shape=None, seed=None, name=None, training=False):

    """Dropout to a value with rescaling."""
    def dropout_selu_impl(x, rate, alpha, noise_shape, seed, name):
        keep_prob = 1.0 - rate
        x = ops.convert_to_tensor(x, name="x")
        if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1:
            raise ValueError("keep_prob must be a scalar tensor or a float in the "
                             "range (0, 1], got %g" % keep_prob)
        keep_prob = ops.convert_to_tensor(keep_prob, dtype=x.dtype, name="keep_prob")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        alpha = ops.convert_to_tensor(alpha, dtype=x.dtype, name="alpha")
        keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())

        if tensor_util.constant_value(keep_prob) == 1:
            return x

        noise_shape = noise_shape if noise_shape is not None else array_ops.shape(x)
        random_tensor = keep_prob
        random_tensor += random_ops.random_uniform(noise_shape, seed=seed, dtype=x.dtype)
        binary_tensor = math_ops.floor(random_tensor)
        ret = x * binary_tensor + alpha * (1 - binary_tensor)

        a = tf.sqrt(fixed_point_var / (keep_prob * ((1 - keep_prob) * tf.pow(alpha - fixed_point_mean, 2) +
                                                    fixed_point_var)))
        b = fixed_point_mean - a * (keep_prob * fixed_point_mean + (1 - keep_prob) * alpha)
        ret = a * ret + b
        ret.set_shape(x.get_shape())
        return ret

    with ops.name_scope(name, "dropout", [x]) as name:
        return utils.smart_cond(training, lambda: dropout_selu_impl(x, rate, alpha, noise_shape, seed, name),
                                lambda: array_ops.identity(x)) 
開發者ID:IsaacChanghau,項目名稱:AmusingPythonCodes,代碼行數:37,代碼來源:get_selu_parameters.py

示例12: call

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def call(self, inputs, training=False):

    def dropped_inputs():
      return nn.dropout(inputs, 1  - self.rate,
                        noise_shape=self._get_noise_shape(inputs),
                        seed=self.seed)
    return utils.smart_cond(training,
                            dropped_inputs,
                            lambda: array_ops.identity(inputs)) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:11,代碼來源:core.py

示例13: get_image_resize_method

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def get_image_resize_method(resize_method, batch_position=0):
    """Get tensorflow resize method.
  
    If resize_method is 'round_robin', return different methods based on batch
    position in a round-robin fashion. NOTE: If the batch size is not a multiple
    of the number of methods, then the distribution of methods will not be
    uniform.
  
    Args:
      resize_method: (string) nearest, bilinear, bicubic, area, or round_robin.
      batch_position: position of the image in a batch. NOTE: this argument can
        be an integer or a tensor
    Returns:
      one of resize type defined in tf.image.ResizeMethod.
    """
    resize_methods_map = {
        'nearest': tf.image.ResizeMethod.NEAREST_NEIGHBOR,
        'bilinear': tf.image.ResizeMethod.BILINEAR,
        'bicubic': tf.image.ResizeMethod.BICUBIC,
        'area': tf.image.ResizeMethod.AREA
    }

    if resize_method != 'round_robin':
        return resize_methods_map[resize_method]

    # return a resize method based on batch position in a round-robin fashion.
    resize_methods = resize_methods_map.values()

    def lookup(index):
        return resize_methods[index]

    def resize_method_0():
        return utils.smart_cond(batch_position % len(resize_methods) == 0,
                                lambda: lookup(0), resize_method_1)

    def resize_method_1():
        return utils.smart_cond(batch_position % len(resize_methods) == 1,
                                lambda: lookup(1), resize_method_2)

    def resize_method_2():
        return utils.smart_cond(batch_position % len(resize_methods) == 2,
                                lambda: lookup(2), lambda: lookup(3))

    # NOTE(jsimsa): Unfortunately, we cannot use a single recursive function here
    # because TF would not be able to construct a finite graph.

    return resize_method_0() 
開發者ID:IntelAI,項目名稱:models,代碼行數:49,代碼來源:preprocessing.py

示例14: distort_color

# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import smart_cond [as 別名]
def distort_color(image, batch_position=0, distort_color_in_yiq=False,
                  scope=None):
    """Distort the color of the image.
  
    Each color distortion is non-commutative and thus ordering of the color ops
    matters. Ideally we would randomly permute the ordering of the color ops.
    Rather then adding that level of complication, we select a distinct ordering
    of color ops based on the position of the image in a batch.
  
    Args:
      image: float32 Tensor containing single image. Tensor values should be in
        range [0, 1].
      batch_position: the position of the image in a batch. NOTE: this argument
        can be an integer or a tensor
      distort_color_in_yiq: distort color of input images in YIQ space.
      scope: Optional scope for op_scope.
    Returns:
      color-distorted image
    """
    with tf.compat.v1.name_scope(scope or 'distort_color'):
        def distort_fn_0(image=image):
            """Variant 0 of distort function."""
            image = tf.image.random_brightness(image, max_delta=32. / 255.)
            # if distort_color_in_yiq:
            #  image = distort_image_ops.random_hsv_in_yiq(
            #      image, lower_saturation=0.5, upper_saturation=1.5,
            #      max_delta_hue=0.2 * math.pi)
            # else:
            image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
            image = tf.image.random_hue(image, max_delta=0.2)
            image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
            return image

        def distort_fn_1(image=image):
            """Variant 1 of distort function."""
            image = tf.image.random_brightness(image, max_delta=32. / 255.)
            image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
            # if distort_color_in_yiq:
            #  image = distort_image_ops.random_hsv_in_yiq(
            #      image, lower_saturation=0.5, upper_saturation=1.5,
            #      max_delta_hue=0.2 * math.pi)
            # else:
            image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
            image = tf.image.random_hue(image, max_delta=0.2)
            return image

        image = utils.smart_cond(batch_position % 2 == 0, distort_fn_0,
                                 distort_fn_1)
        # The random_* ops do not necessarily clamp.
        image = tf.clip_by_value(image, 0.0, 1.0)
        return image 
開發者ID:IntelAI,項目名稱:models,代碼行數:53,代碼來源:preprocessing.py


注:本文中的tensorflow.python.layers.utils.smart_cond方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。