本文整理匯總了Python中tensorflow.python.layers.utils.deconv_output_length方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.deconv_output_length方法的具體用法?Python utils.deconv_output_length怎麽用?Python utils.deconv_output_length使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.layers.utils
的用法示例。
在下文中一共展示了utils.deconv_output_length方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _compute_output_shape
# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import deconv_output_length [as 別名]
def _compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
output_shape = list(input_shape)
if self.data_format == 'channels_first':
c_axis, h_axis, w_axis = 1, 2, 3
else:
c_axis, h_axis, w_axis = 3, 1, 2
kernel_h, kernel_w = self.kernel_size
stride_h, stride_w = self.strides
output_shape[c_axis] = self.filters
output_shape[h_axis] = utils.deconv_output_length(
output_shape[h_axis], kernel_h, self.padding, stride_h)
output_shape[w_axis] = utils.deconv_output_length(
output_shape[w_axis], kernel_w, self.padding, stride_w)
return tensor_shape.TensorShape(output_shape)
示例2: conv2d_transpose
# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import deconv_output_length [as 別名]
def conv2d_transpose(x, W, strides=(1, 1), padding="SAME"):
strides = list(strides)
# Compute output size, cf. tf.layers.Conv2DTranspose
W_shape = tf.shape(W)
inputs_shape = tf.shape(x)
# Infer the dynamic output shape:
out_height = deconv_output_length(inputs_shape[1], W_shape[0], padding, strides[0])
out_width = deconv_output_length(inputs_shape[2], W_shape[1], padding, strides[1])
output_shape = (inputs_shape[0], out_height, out_width, W_shape[2])
return tf.nn.conv2d_transpose(x, W, tf.stack(output_shape), strides=[1] + strides + [1], padding=padding)
示例3: call
# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import deconv_output_length [as 別名]
def call(self, inputs):
inputs_shape = array_ops.shape(inputs)
batch_size = inputs_shape[0]
if self.data_format == 'channels_first':
c_axis, h_axis, w_axis = 1, 2, 3
else:
c_axis, h_axis, w_axis = 3, 1, 2
height, width = inputs_shape[h_axis], inputs_shape[w_axis]
kernel_h, kernel_w = self.kernel_size
stride_h, stride_w = self.strides
# Infer the dynamic output shape:
out_height = utils.deconv_output_length(height,
kernel_h,
self.padding,
stride_h)
out_width = utils.deconv_output_length(width,
kernel_w,
self.padding,
stride_w)
if self.data_format == 'channels_first':
output_shape = (batch_size, self.filters, out_height, out_width)
strides = (1, 1, stride_h, stride_w)
else:
output_shape = (batch_size, out_height, out_width, self.filters)
strides = (1, stride_h, stride_w, 1)
output_shape_tensor = array_ops.stack(output_shape)
outputs = nn.conv2d_transpose(
inputs,
self.kernel,
output_shape_tensor,
strides,
padding=self.padding.upper(),
data_format=utils.convert_data_format(self.data_format, ndim=4))
# Infer the static output shape:
out_shape = inputs.get_shape().as_list()
out_shape[c_axis] = self.filters
out_shape[h_axis] = utils.deconv_output_length(out_shape[h_axis],
kernel_h,
self.padding,
stride_h)
out_shape[w_axis] = utils.deconv_output_length(out_shape[w_axis],
kernel_w,
self.padding,
stride_w)
outputs.set_shape(out_shape)
if self.bias:
outputs = nn.bias_add(
outputs,
self.bias,
data_format=utils.convert_data_format(self.data_format, ndim=4))
if self.activation is not None:
return self.activation(outputs)
return outputs
示例4: call
# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import deconv_output_length [as 別名]
def call(self, inputs):
inputs_shape = array_ops.shape(inputs)
batch_size = inputs_shape[0]
if self.data_format == 'channels_first':
c_axis, h_axis, w_axis = 1, 2, 3
else:
c_axis, h_axis, w_axis = 3, 1, 2
height, width = inputs_shape[h_axis], inputs_shape[w_axis]
kernel_h, kernel_w = self.kernel_size
stride_h, stride_w = self.strides
# Infer the dynamic output shape:
out_height = utils.deconv_output_length(height,
kernel_h,
self.padding,
stride_h)
out_width = utils.deconv_output_length(width,
kernel_w,
self.padding,
stride_w)
if self.data_format == 'channels_first':
output_shape = (batch_size, self.filters, out_height, out_width)
strides = (1, 1, stride_h, stride_w)
else:
output_shape = (batch_size, out_height, out_width, self.filters)
strides = (1, stride_h, stride_w, 1)
output_shape_tensor = array_ops.stack(output_shape)
outputs = nn.conv2d_transpose(
inputs,
self.kernel,
output_shape_tensor,
strides,
padding=self.padding.upper(),
data_format=utils.convert_data_format(self.data_format, ndim=4))
if context.in_graph_mode():
# Infer the static output shape:
out_shape = inputs.get_shape().as_list()
out_shape[c_axis] = self.filters
out_shape[h_axis] = utils.deconv_output_length(out_shape[h_axis],
kernel_h,
self.padding,
stride_h)
out_shape[w_axis] = utils.deconv_output_length(out_shape[w_axis],
kernel_w,
self.padding,
stride_w)
outputs.set_shape(out_shape)
if self.use_bias:
outputs = nn.bias_add(
outputs,
self.bias,
data_format=utils.convert_data_format(self.data_format, ndim=4))
if self.activation is not None:
return self.activation(outputs)
return outputs
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:62,代碼來源:convolutional.py
示例5: style_swap
# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import deconv_output_length [as 別名]
def style_swap(content, style, patch_size, stride):
'''Efficiently swap content feature patches with nearest-neighbor style patches
Original paper: https://arxiv.org/abs/1612.04337
Adapted from: https://github.com/rtqichen/style-swap/blob/master/lib/NonparametricPatchAutoencoderFactory.lua
'''
nC = tf.shape(style)[-1] # Num channels of input content feature and style-swapped output
### Extract patches from style image that will be used for conv/deconv layers
style_patches = tf.extract_image_patches(style, [1,patch_size,patch_size,1], [1,stride,stride,1], [1,1,1,1], 'VALID')
before_reshape = tf.shape(style_patches) # NxRowsxColsxPatch_size*Patch_size*nC
style_patches = tf.reshape(style_patches, [before_reshape[1]*before_reshape[2],patch_size,patch_size,nC])
style_patches = tf.transpose(style_patches, [1,2,3,0]) # Patch_sizexPatch_sizexIn_CxOut_c
# Normalize each style patch
style_patches_norm = tf.nn.l2_normalize(style_patches, dim=3)
# Compute cross-correlation/nearest neighbors of patches by using style patches as conv filters
ss_enc = tf.nn.conv2d(content,
style_patches_norm,
[1,stride,stride,1],
'VALID')
# For each spatial position find index of max along channel/patch dim
ss_argmax = tf.argmax(ss_enc, axis=3)
encC = tf.shape(ss_enc)[-1] # Num channels in intermediate conv output, same as # of patches
# One-hot encode argmax with same size as ss_enc, with 1's in max channel idx for each spatial pos
ss_oh = tf.one_hot(ss_argmax, encC, 1., 0., 3)
# Calc size of transposed conv out
deconv_out_H = utils.deconv_output_length(tf.shape(ss_oh)[1], patch_size, 'valid', stride)
deconv_out_W = utils.deconv_output_length(tf.shape(ss_oh)[2], patch_size, 'valid', stride)
deconv_out_shape = tf.stack([1,deconv_out_H,deconv_out_W,nC])
# Deconv back to original content size with highest matching (unnormalized) style patch swapped in for each content patch
ss_dec = tf.nn.conv2d_transpose(ss_oh,
style_patches,
deconv_out_shape,
[1,stride,stride,1],
'VALID')
### Interpolate to average overlapping patch locations
ss_oh_sum = tf.reduce_sum(ss_oh, axis=3, keep_dims=True)
filter_ones = tf.ones([patch_size,patch_size,1,1], dtype=tf.float32)
deconv_out_shape = tf.stack([1,deconv_out_H,deconv_out_W,1]) # Same spatial size as ss_dec with 1 channel
counting = tf.nn.conv2d_transpose(ss_oh_sum,
filter_ones,
deconv_out_shape,
[1,stride,stride,1],
'VALID')
counting = tf.tile(counting, [1,1,1,nC]) # Repeat along channel dim to make same size as ss_dec
interpolated_dec = tf.divide(ss_dec, counting)
return interpolated_dec
### Adaptive Instance Normalization ###