本文整理匯總了Python中tensorflow.python.layers.utils.constant_value方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.constant_value方法的具體用法?Python utils.constant_value怎麽用?Python utils.constant_value使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.layers.utils
的用法示例。
在下文中一共展示了utils.constant_value方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _smart_select
# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import constant_value [as 別名]
def _smart_select(pred, fn_then, fn_else):
"""Selects fn_then() or fn_else() based on the value of pred.
The purpose of this function is the same as `utils.smart_cond`. However, at
the moment there is a bug (b/36297356) that seems to kick in only when
`smart_cond` delegates to `tf.cond`, which sometimes results in the training
hanging when using parameter servers. This function will output the result
of `fn_then` or `fn_else` if `pred` is known at graph construction time.
Otherwise, it will use `tf.where` which will result in some redundant work
(both branches will be computed but only one selected). However, the tensors
involved will usually be small (means and variances in batchnorm), so the
cost will be small and will not be incurred at all if `pred` is a constant.
Args:
pred: A boolean scalar `Tensor`.
fn_then: A callable to use when pred==True.
fn_else: A callable to use when pred==False.
Returns:
A `Tensor` whose value is fn_then() or fn_else() based on the value of pred.
"""
pred_value = utils.constant_value(pred)
if pred_value:
return fn_then()
elif pred_value is False:
return fn_else()
t_then = array_ops.expand_dims(fn_then(), 0)
t_else = array_ops.expand_dims(fn_else(), 0)
pred = array_ops.reshape(pred, [1])
result = array_ops.where(pred, t_then, t_else)
return array_ops.squeeze(result, [0])
示例2: _fused_batch_norm
# 需要導入模塊: from tensorflow.python.layers import utils [as 別名]
# 或者: from tensorflow.python.layers.utils import constant_value [as 別名]
def _fused_batch_norm(self, inputs, training):
"""Returns the output of fused batch norm."""
# TODO(reedwm): Add support for fp16 inputs.
beta = self.beta if self.center else self._beta_const
gamma = self.gamma if self.scale else self._gamma_const
def _fused_batch_norm_training():
return nn.fused_batch_norm(
inputs,
gamma,
beta,
epsilon=self.epsilon,
data_format=self._data_format)
def _fused_batch_norm_inference():
return nn.fused_batch_norm(
inputs,
gamma,
beta,
mean=self.moving_mean,
variance=self.moving_variance,
epsilon=self.epsilon,
is_training=False,
data_format=self._data_format)
output, mean, variance = utils.smart_cond(
training, _fused_batch_norm_training, _fused_batch_norm_inference)
if not self._bessels_correction_test_only:
# Remove Bessel's correction to be consistent with non-fused batch norm.
# Note that the variance computed by fused batch norm is
# with Bessel's correction.
sample_size = math_ops.cast(
array_ops.size(inputs) / array_ops.size(variance), variance.dtype)
factor = (sample_size - math_ops.cast(1.0, variance.dtype)) / sample_size
variance *= factor
training_value = utils.constant_value(training)
if training_value is None:
one_minus_decay = _smart_select(training,
lambda: self._one_minus_decay,
lambda: 0.)
else:
one_minus_decay = ops.convert_to_tensor(self._one_minus_decay)
if training_value or training_value is None:
mean_update = self._assign_moving_average(self.moving_mean, mean,
one_minus_decay)
variance_update = self._assign_moving_average(self.moving_variance,
variance, one_minus_decay)
if context.in_graph_mode():
# Note that in Eager mode, the updates are already executed when running
# assign_moving_averages. So we do not need to put them into
# collections.
self.add_update(mean_update, inputs=inputs)
self.add_update(variance_update, inputs=inputs)
return output
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:58,代碼來源:normalization.py