當前位置: 首頁>>代碼示例>>Python>>正文


Python core.dropout方法代碼示例

本文整理匯總了Python中tensorflow.python.layers.core.dropout方法的典型用法代碼示例。如果您正苦於以下問題:Python core.dropout方法的具體用法?Python core.dropout怎麽用?Python core.dropout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.layers.core的用法示例。


在下文中一共展示了core.dropout方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: dropout

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import dropout [as 別名]
def dropout(self, keep_prob=0.5, input_layer=None):
    if input_layer is None:
      input_layer = self.top_layer
    else:
      self.top_size = None
    name = 'dropout' + str(self.counts['dropout'])
    with tf.variable_scope(name):
      if not self.phase_train:
        keep_prob = 1.0
      if self.use_tf_layers:
        dropout = core_layers.dropout(input_layer, 1. - keep_prob,
                                      training=self.phase_train)
      else:
        dropout = tf.nn.dropout(input_layer, keep_prob)
      self.top_layer = dropout
      return dropout 
開發者ID:tensorpack,項目名稱:benchmarks,代碼行數:18,代碼來源:convnet_builder.py

示例2: classifier

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import dropout [as 別名]
def classifier(x, phase, enc_phase=1, trim=0, scope='class', reuse=None, internal_update=False, getter=None):
    with tf.variable_scope(scope, reuse=reuse, custom_getter=getter):
        with arg_scope([leaky_relu], a=0.1), \
             arg_scope([conv2d, dense], activation=leaky_relu, bn=True, phase=phase), \
             arg_scope([batch_norm], internal_update=internal_update):

            preprocess = instance_norm if args.inorm else tf.identity
            layout = [
                (preprocess, (), {}),
                (conv2d, (64, 3, 1), {}),
                (conv2d, (64, 3, 1), {}),
                (conv2d, (64, 3, 1), {}),
                (max_pool, (2, 2), {}),
                (dropout, (), dict(training=phase)),
                (noise, (1,), dict(phase=phase)),
                (conv2d, (64, 3, 1), {}),
                (conv2d, (64, 3, 1), {}),
                (conv2d, (64, 3, 1), {}),
                (max_pool, (2, 2), {}),
                (dropout, (), dict(training=phase)),
                (noise, (1,), dict(phase=phase)),
                (conv2d, (64, 3, 1), {}),
                (conv2d, (64, 3, 1), {}),
                (conv2d, (64, 3, 1), {}),
                (avg_pool, (), dict(global_pool=True)),
                (dense, (args.Y,), dict(activation=None))
            ]

            if enc_phase:
                start = 0
                end = len(layout) - trim
            else:
                start = len(layout) - trim
                end = len(layout)

            for i in xrange(start, end):
                with tf.variable_scope('l{:d}'.format(i)):
                    f, f_args, f_kwargs = layout[i]
                    x = f(x, *f_args, **f_kwargs)

    return x 
開發者ID:RuiShu,項目名稱:dirt-t,代碼行數:43,代碼來源:small.py

示例3: dropout

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import dropout [as 別名]
def dropout(self, keep_prob=0.5, input_layer=None):
        if input_layer is None:
            input_layer = self.top_layer
        else:
            self.top_size = None
        name = 'dropout' + str(self.counts['dropout'])
        with tf.variable_scope(name):
            if not self.phase_train:
                keep_prob = 1.0
            if self.use_tf_layers:
                dropout = core_layers.dropout(input_layer, 1. - keep_prob)
            else:
                dropout = tf.nn.dropout(input_layer, keep_prob)
            self.top_layer = dropout
            return dropout 
開發者ID:snuspl,項目名稱:parallax,代碼行數:17,代碼來源:convnet_builder.py

示例4: _dropout

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import dropout [as 別名]
def _dropout(self, bottom, drop_rate):
        return dropout(bottom, rate=drop_rate, training=self.training) 
開發者ID:DingXiaoH,項目名稱:Centripetal-SGD,代碼行數:4,代碼來源:tfm_builder_densenet.py

示例5: dropout

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import dropout [as 別名]
def dropout(self, keep_prob=0.5, input_layer=None):
    if input_layer is None:
      input_layer = self.top_layer
    else:
      self.top_size = None
    name = 'dropout' + str(self.counts['dropout'])
    with tf.variable_scope(name):
      if not self.phase_train:
        keep_prob = 1.0
      if self.use_tf_layers:
        dropout = core_layers.dropout(input_layer, 1. - keep_prob)
      else:
        dropout = tf.nn.dropout(input_layer, keep_prob)
      self.top_layer = dropout
      return dropout 
開發者ID:awslabs,項目名稱:deeplearning-benchmark,代碼行數:17,代碼來源:convnet_builder.py

示例6: __init__

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import dropout [as 別名]
def __init__(self,
               hidden_units,
               feature_columns,
               model_dir=None,
               label_dimension=1,
               weight_column=None,
               optimizer='Adagrad',
               activation_fn=nn.relu,
               dropout=None,
               input_layer_partitioner=None,
               config=None):
    """Initializes a `DNNRegressor` instance.

    Args:
      hidden_units: Iterable of number hidden units per layer. All layers are
        fully connected. Ex. `[64, 32]` means first layer has 64 nodes and
        second one has 32.
      feature_columns: An iterable containing all the feature columns used by
        the model. All items in the set should be instances of classes derived
        from `_FeatureColumn`.
      model_dir: Directory to save model parameters, graph and etc. This can
        also be used to load checkpoints from the directory into a estimator to
        continue training a previously saved model.
      label_dimension: Number of regression targets per example. This is the
        size of the last dimension of the labels and logits `Tensor` objects
        (typically, these have shape `[batch_size, label_dimension]`).
      weight_column: A string or a `_NumericColumn` created by
        `tf.feature_column.numeric_column` defining feature column representing
        weights. It is used to down weight or boost examples during training. It
        will be multiplied by the loss of the example. If it is a string, it is
        used as a key to fetch weight tensor from the `features`. If it is a
        `_NumericColumn`, raw tensor is fetched by key `weight_column.key`,
        then weight_column.normalizer_fn is applied on it to get weight tensor.
      optimizer: An instance of `tf.Optimizer` used to train the model. Defaults
        to Adagrad optimizer.
      activation_fn: Activation function applied to each layer. If `None`, will
        use `tf.nn.relu`.
      dropout: When not `None`, the probability we will drop out a given
        coordinate.
      input_layer_partitioner: Optional. Partitioner for input layer. Defaults
        to `min_max_variable_partitioner` with `min_slice_size` 64 << 20.
      config: `RunConfig` object to configure the runtime settings.
    """
    def _model_fn(features, labels, mode, config):
      return _dnn_model_fn(
          features=features,
          labels=labels,
          mode=mode,
          head=head_lib.  # pylint: disable=protected-access
          _regression_head_with_mean_squared_error_loss(
              label_dimension=label_dimension, weight_column=weight_column),
          hidden_units=hidden_units,
          feature_columns=tuple(feature_columns or []),
          optimizer=optimizer,
          activation_fn=activation_fn,
          dropout=dropout,
          input_layer_partitioner=input_layer_partitioner,
          config=config)
    super(DNNRegressor, self).__init__(
        model_fn=_model_fn, model_dir=model_dir, config=config) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:62,代碼來源:dnn.py


注:本文中的tensorflow.python.layers.core.dropout方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。