當前位置: 首頁>>代碼示例>>Python>>正文


Python core.Dense方法代碼示例

本文整理匯總了Python中tensorflow.python.layers.core.Dense方法的典型用法代碼示例。如果您正苦於以下問題:Python core.Dense方法的具體用法?Python core.Dense怎麽用?Python core.Dense使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.layers.core的用法示例。


在下文中一共展示了core.Dense方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_config

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def get_config(self):
    config = {
        'units': self.units,
        'activation': activations.serialize(self.activation),
        'use_bias': self.use_bias,
        'kernel_initializer': initializers.serialize(self.kernel_initializer),
        'bias_initializer': initializers.serialize(self.bias_initializer),
        'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
        'bias_regularizer': regularizers.serialize(self.bias_regularizer),
        'activity_regularizer':
            regularizers.serialize(self.activity_regularizer),
        'kernel_constraint': constraints.serialize(self.kernel_constraint),
        'bias_constraint': constraints.serialize(self.bias_constraint)
    }
    base_config = super(Dense, self).get_config()
    return dict(list(base_config.items()) + list(config.items())) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:core.py

示例2: __init__

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def __init__(self,
                 num_mixtures,
                 memory,
                 memory_sequence_length=None,
                 check_inner_dims_defined=True,
                 score_mask_value=None,
                 name='GmmAttention'):

        self.dtype = memory.dtype
        self.num_mixtures = num_mixtures
        self.query_layer = tf.layers.Dense(3 * num_mixtures, name='gmm_query_layer', use_bias=True, dtype=self.dtype)

        with tf.name_scope(name, 'GmmAttentionMechanismInit'):
            if score_mask_value is None:
                score_mask_value = 0.
            self._maybe_mask_score = functools.partial(
                _maybe_mask_score,
                memory_sequence_length=memory_sequence_length,
                score_mask_value=score_mask_value)
            self._value = _prepare_memory(
                memory, memory_sequence_length, check_inner_dims_defined)
            self._batch_size = (
                self._value.shape[0].value or tf.shape(self._value)[0])
            self._alignments_size = (
                    self._value.shape[1].value or tf.shape(self._value)[1]) 
開發者ID:hccho2,項目名稱:Tacotron-Wavenet-Vocoder-Korean,代碼行數:27,代碼來源:rnn_wrappers.py

示例3: monkeypatch_tf_layers

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def monkeypatch_tf_layers():
    if get_tf_version_tuple() < (1, 4):
        if not hasattr(tf.layers, 'Dense'):
            from tensorflow.python.layers.core import Dense
            tf.layers.Dense = Dense

            from tensorflow.python.layers.normalization import BatchNormalization
            tf.layers.BatchNormalization = BatchNormalization

            from tensorflow.python.layers.convolutional import Conv2DTranspose, Conv2D
            tf.layers.Conv2DTranspose = Conv2DTranspose
            tf.layers.Conv2D = Conv2D

            from tensorflow.python.layers.pooling import MaxPooling2D, AveragePooling2D
            tf.layers.MaxPooling2D = MaxPooling2D
            tf.layers.AveragePooling2D = AveragePooling2D 
開發者ID:microsoft,項目名稱:petridishnn,代碼行數:18,代碼來源:tflayer.py

示例4: _project_lstm_state_tuple

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def _project_lstm_state_tuple(state_tuple, num_units):
    r"""
    Concatenates all the `c` and `h` members from a list of `LSTMStateTuple`
      and projects them to a space of dimension `num_units`
    Args:
        state_tuple: a list of `LSTMStateTuple` objects
        num_units: output dimension

    Returns:
        projected_state: a single `LSTMStateTuple` with `c` and `h` of dimension `num_units`
    """
    state_proj_layer = Dense(num_units, name='state_projection', use_bias=False)

    cat_c = tf.concat([state.c for state in state_tuple], axis=-1)
    cat_h = tf.concat([state.h for state in state_tuple], axis=-1)

    proj_c = state_proj_layer(cat_c)
    proj_h = state_proj_layer(cat_h)

    projected_state = tf.contrib.rnn.LSTMStateTuple(c=proj_c, h=proj_h)

    return projected_state 
開發者ID:georgesterpu,項目名稱:avsr-tf1,代碼行數:24,代碼來源:decoder_unimodal.py

示例5: _maybe_add_dense_layers

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def _maybe_add_dense_layers(self):
        r"""
        Optionally passes self._input through several Fully Connected (Dense) layers
        with the configuration defined by the self._input_dense_layers tuple

        Returns
        -------
        The output of the network of Dense layers
        """
        layer_inputs = self._inputs
        if self._hparams.input_dense_layers[0] > 0:

            fc = [Dense(units,
                        activation=tf.nn.selu,
                        use_bias=False,
                        kernel_initializer=tf.variance_scaling_initializer(),
                        kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=0.0001))
                  for units in self._hparams.input_dense_layers]

            for layer in fc:
                layer_inputs = layer(layer_inputs)
        else:
            pass
        return layer_inputs 
開發者ID:georgesterpu,項目名稱:avsr-tf1,代碼行數:26,代碼來源:encoder.py

示例6: _init_decoder

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def _init_decoder(self):
        with tf.variable_scope("Decoder"):
            self._decoder_cells = build_rnn_layers(
                cell_type=self._hparams.cell_type,
                num_units_per_layer=self._hparams.decoder_units_per_layer,
                use_dropout=self._hparams.use_dropout,
                dropout_probability=self._hparams.decoder_dropout_probability,
                mode=self._mode,
                dtype=self._hparams.dtype,
            )

            self._decoder_initial_state = self._decoder_cells.zero_state(
                batch_size=self._batch_size, dtype=self._hparams.dtype)

            self._dense_layer = Dense(
                self._vocab_size,
                name='my_dense',
                dtype=self._hparams.dtype)

            self._build_decoder_train()  # used for both training and evaluation 
開發者ID:georgesterpu,項目名稱:avsr-tf1,代碼行數:22,代碼來源:lm.py

示例7: build

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def build(self, input_shape):
        input_shape = tensor_shape.TensorShape(input_shape)
        if input_shape[-1].value is None:
            raise ValueError('The last dimension of the inputs to `Dense` '
                             'should be defined. Found `None`.')
        self.input_spec = base.InputSpec(min_ndim=2,
                                         axes={-1: input_shape[-1].value})

        self.kernel = self._build_kernel(input_shape)

        if self.use_bias:
            self.bias = self.add_variable('bias',
                                          shape=[self.units],
                                          initializer=self.bias_initializer,
                                          regularizer=self.bias_regularizer,
                                          constraint=self.bias_constraint,
                                          dtype=self.dtype,
                                          trainable=True)
        else:
            self.bias = None
        self.built = True 
開發者ID:babylonhealth,項目名稱:rgat,代碼行數:23,代碼來源:basis_decomposition_dense.py

示例8: build_rnn

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def build_rnn(self):
        self.initial_state = tf.cond(
            self.beam_search_decoding, lambda: seq2seq.tile_batch(
                self.features["state"], self.hparams.beam_width),
            lambda: self.features["state"], name="initial_state")
        self.build_embeddings()
        cell_list = self.build_deep_cell(return_raw_list=True)
        if self.hparams.use_attention:
            cell_list[-1] = self.build_attention(cell_list[-1])
            if self.hparams.depth > 1:
                self.initial_state[-1] = final_cell.zero_state(batch_size=self.batch_size)
            else:
                self.initial_state = final_cell.zero_state(batch_size=self.batch_size)
        with tf.name_scope('rnn_cell'):
            self.cell = self.build_deep_cell(cell_list)
        self.output_layer = Dense(self.vocab.size(), name='output_layer') 
開發者ID:microsoft,項目名稱:icecaps,代碼行數:18,代碼來源:seq2seq_decoder_estimator.py

示例9: decoder

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def decoder(x, decoder_inputs, keep_prob, sequence_length, memory, memory_length, first_attention):
    with tf.variable_scope("Decoder") as scope:
        label_embeddings = tf.get_variable(name="embeddings", shape=[n_classes, embedding_size], dtype=tf.float32)
        train_inputs_embedded = tf.nn.embedding_lookup(label_embeddings, decoder_inputs)
        lstm = rnn.LayerNormBasicLSTMCell(n_hidden, dropout_keep_prob=keep_prob)
        output_l = layers_core.Dense(n_classes, use_bias=True)
        encoder_state = rnn.LSTMStateTuple(x, x)
        attention_mechanism = BahdanauAttention(embedding_size, memory=memory, memory_sequence_length=memory_length)
        cell = AttentionWrapper(lstm, attention_mechanism, output_attention=False)
        cell_state = cell.zero_state(dtype=tf.float32, batch_size=train_batch_size)
        cell_state = cell_state.clone(cell_state=encoder_state, attention=first_attention)
        train_helper = TrainingHelper(train_inputs_embedded, sequence_length)
        train_decoder = BasicDecoder(cell, train_helper, cell_state, output_layer=output_l)
        decoder_outputs_train, decoder_state_train, decoder_seq_train = dynamic_decode(train_decoder, impute_finished=True)
        tiled_inputs = tile_batch(memory, multiplier=beam_width)
        tiled_sequence_length = tile_batch(memory_length, multiplier=beam_width)
        tiled_first_attention = tile_batch(first_attention, multiplier=beam_width)
        attention_mechanism = BahdanauAttention(embedding_size, memory=tiled_inputs, memory_sequence_length=tiled_sequence_length)
        x2 = tile_batch(x, beam_width)
        encoder_state2 = rnn.LSTMStateTuple(x2, x2)
        cell = AttentionWrapper(lstm, attention_mechanism, output_attention=False)
        cell_state = cell.zero_state(dtype=tf.float32, batch_size=test_batch_size * beam_width)
        cell_state = cell_state.clone(cell_state=encoder_state2, attention=tiled_first_attention)
        infer_decoder = BeamSearchDecoder(cell, embedding=label_embeddings, start_tokens=[GO] * test_len, end_token=EOS,
                                          initial_state=cell_state, beam_width=beam_width, output_layer=output_l)
        decoder_outputs_infer, decoder_state_infer, decoder_seq_infer = dynamic_decode(infer_decoder, maximum_iterations=4)
        return decoder_outputs_train, decoder_outputs_infer, decoder_state_infer 
開發者ID:thunlp,項目名稱:Auto_CLIWC,代碼行數:29,代碼來源:train_liwc.py

示例10: __create_decoder_cell

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def __create_decoder_cell(self):

        self.decoder_cell = tf.nn.rnn_cell.GRUCell(self.config.DECODER_RNN_HIDDEN_SIZE)

        # fully connected layer to change size of Encoder Last state to Decoder Hidden size
        decoder_hidden_state_reshape = Dense(self.config.DECODER_RNN_HIDDEN_SIZE)

        self.decoder_initial_state = (decoder_hidden_state_reshape(self.encoder_last_state), ) 
開發者ID:hadyelsahar,項目名稱:Zeroshot-QuestionGeneration,代碼行數:10,代碼來源:tripletext2seq.py

示例11: __create_decoder_cell

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def __create_decoder_cell(self):

        gru = tf.nn.rnn_cell.GRUCell(self.config.DECODER_RNN_HIDDEN_SIZE)

        self.decoder_cell_list = [gru] * self.config.NUM_LAYERS

        self.decoder_cell = tf.nn.rnn_cell.MultiRNNCell(self.decoder_cell_list)

        decoder_hidden_state_reshape = Dense(self.config.DECODER_RNN_HIDDEN_SIZE)  # reshape last state of encoder to decoder hidden size
        self.decoder_initial_state = (decoder_hidden_state_reshape(self.encoder_triples_last_state), ) 
開發者ID:hadyelsahar,項目名稱:Zeroshot-QuestionGeneration,代碼行數:12,代碼來源:triples2seq.py

示例12: __create_decoder_attention_cell

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def __create_decoder_attention_cell(self):
        """
        create decoder RNN with attention
        :return:
        """

        self.attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(
            num_units=self.config.TRIPLES_EMBEDDING_SIZE,    # the depth of the Attention layer
            memory=self.encoder_triples_inputs_embedded,
            name="Attention"
        )

        # create decoder cell:
        gru = self.__build_single_rnn_cell(self.config.DECODER_RNN_HIDDEN_SIZE)
        self.decoder_cell_list = [gru] * self.config.NUM_LAYERS

        decoder_hidden_state_reshape = Dense(self.config.DECODER_RNN_HIDDEN_SIZE)  # reshape last state of encoder to decoder hidden size
        self.decoder_cell_list[-1] = tf.contrib.seq2seq.AttentionWrapper(
            cell=self.decoder_cell_list[-1],
            attention_layer_size=self.config.DECODER_RNN_HIDDEN_SIZE,         # the output hidden size of the last decoder
            attention_mechanism=self.attention_mechanism,
            initial_cell_state= decoder_hidden_state_reshape(self.encoder_triples_last_state),
            alignment_history=False,
            name="Attention_Wrapper"
        )

        self.decoder_cell = tf.nn.rnn_cell.MultiRNNCell(self.decoder_cell_list)

        # To be compatible with AttentionWrapper, the encoder last state
        # of the top layer should be converted into the AttentionWrapperState form
        # We can easily do this by calling AttentionWrapper.zero_state

        # self.decoder_initial_state = self.encoder_last_state

        init_state = self.decoder_cell_list[-1].zero_state(
            batch_size=self.batch_size,
            dtype=tf.float32
        )

        # a tuple because decode initial state has to take a tuple
        self.decoder_initial_state = (init_state,) 
開發者ID:hadyelsahar,項目名稱:Zeroshot-QuestionGeneration,代碼行數:43,代碼來源:triples2seq.py

示例13: __init__

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def __init__(self,
               units,
               activation=None,
               use_bias=True,
               kernel_initializer='glorot_uniform',
               bias_initializer='zeros',
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               **kwargs):
    if 'input_shape' not in kwargs and 'input_dim' in kwargs:
      kwargs['input_shape'] = (kwargs.pop('input_dim'),)

    # Inheritance call order:
    # 1) tf.layers.Dense, 2) keras.layers.Layer, 3) tf.layers.Layer
    super(Dense, self).__init__(
        units,
        activation=activations.get(activation),
        use_bias=use_bias,
        kernel_initializer=initializers.get(kernel_initializer),
        bias_initializer=initializers.get(bias_initializer),
        kernel_regularizer=regularizers.get(kernel_regularizer),
        bias_regularizer=regularizers.get(bias_regularizer),
        activity_regularizer=regularizers.get(activity_regularizer),
        **kwargs)
    # TODO(fchollet): move weight constraint support to core layers.
    self.kernel_constraint = constraints.get(kernel_constraint)
    self.bias_constraint = constraints.get(bias_constraint)
    self.supports_masking = True 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:33,代碼來源:core.py

示例14: build

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def build(self, input_shape):
    super(Dense, self).build(input_shape)
    # TODO(fchollet): move weight constraint support to core layers.
    if self.kernel_constraint:
      self.constraints[self.kernel] = self.kernel_constraint
    if self.use_bias and self.bias_constraint:
      self.constraints[self.bias] = self.bias_constraint 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:9,代碼來源:core.py

示例15: self_attention_2

# 需要導入模塊: from tensorflow.python.layers import core [as 別名]
# 或者: from tensorflow.python.layers.core import Dense [as 別名]
def self_attention_2(self, inputs, name):
        """

        :param inputs_a: audio input (B, T, dim)
        :param inputs_v: video input (B, T, dim)
        :param inputs_t: text input (B, T, dim)
        :param name: scope name
        :return:
        """

        t = inputs.get_shape()[1].value
        share_param = True
        hidden_size = inputs.shape[-1].value  # D value - hidden size of the RNN layer
        if share_param:
            scope_name = 'self_attn_2'
        else:
            scope_name = 'self_attn_2' + name
        # print(scope_name)
        # inputs = tf.transpose(inputs, [2, 0, 1, 3])
        # dense = Dense(hidden_size)
        # init1 = tf.random_normal_initializer(seed=self.seed, dtype=tf.float32,stddev=0.01)
        attention_size = hidden_size
        w_omega = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.01, seed=self.seed))
        b_omega = tf.Variable(tf.random_normal([attention_size], stddev=0.01, seed=self.seed))
        # dense_attention_2 = Dense(attention_size, activation=None,kernel_initializer=init1,kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001))
        params = {'w_omega': w_omega,
                  'b_omega': b_omega,
                  # 'dense': dense_attention_2
                  }
        with tf.variable_scope(scope_name, reuse=tf.AUTO_REUSE):
            outputs = []
            for x in range(t):
                t_x = inputs[:, x, :]

                output = self.attention(inputs, t_x, hidden_size, params, self.mask)  # (b, d)
                outputs.append(output)

            final_output = tf.concat(outputs, axis=1)
            return final_output 
開發者ID:soujanyaporia,項目名稱:multimodal-sentiment-analysis,代碼行數:41,代碼來源:model.py


注:本文中的tensorflow.python.layers.core.Dense方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。