本文整理匯總了Python中tensorflow.python.layers.base.Layer方法的典型用法代碼示例。如果您正苦於以下問題:Python base.Layer方法的具體用法?Python base.Layer怎麽用?Python base.Layer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.layers.base
的用法示例。
在下文中一共展示了base.Layer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def __init__(self, cell, helper, initial_state, latent_vector, output_layer=None):
"""Initialize BasicDecoder.
Args:
cell: An `RNNCell` instance.
helper: A `Helper` instance.
initial_state: A (possibly nested tuple of...) tensors and TensorArrays.
The initial state of the RNNCell.
latent_vector: A hidden state intended to be concatenated with the
hidden state at every time-step of decoding
output_layer: (Optional) An instance of `tf.layers.Layer`, i.e.,
`tf.layers.Dense`. Optional layer to apply to the RNN output prior
to storing the result or sampling.
Raises:
TypeError: if `cell`, `helper` or `output_layer` have an incorrect type.
"""
rnn_cell_impl.assert_like_rnncell("cell must be an RNNCell, received: %s" % type(cell), cell)
if not isinstance(helper, helper_py.Helper):
raise TypeError("helper must be a Helper, received: %s" % type(helper))
if output_layer is not None and not isinstance(output_layer, layers_base.Layer):
raise TypeError("output_layer must be a Layer, received: %s" % type(output_layer))
self._cell = cell
self._helper = helper
self._initial_state = initial_state
self._output_layer = output_layer
self._latent_vector = latent_vector
示例2: call
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def call(self, inputs, forward=True):
vs = variable_scope.get_variable_scope()
vars_before = vs.global_variables()
if forward:
x1, x2 = inputs
out = self._forward(x1, x2)
else:
y1, y2 = inputs
out = self._backward(y1, y2)
# Add any created variables to the Layer's variable stores
new_vars = vs.global_variables()[len(vars_before):]
train_vars = vs.trainable_variables()
for new_var in new_vars:
if new_var in train_vars:
self._trainable_weights.append(new_var)
else:
self._non_trainable_weights.append(new_var)
return out
示例3: compute_mask
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def compute_mask(self, inputs, mask=None): # pylint: disable=unused-argument
"""Computes an output mask tensor.
Arguments:
inputs: Tensor or list of tensors.
mask: Tensor or list of tensors.
Returns:
None or a tensor (or list of tensors,
one per output tensor of the layer).
"""
if not self.supports_masking:
if mask is not None:
if isinstance(mask, list):
if any(m is not None for m in mask):
raise TypeError('Layer ' + self.name + ' does not support masking, '
'but was passed an input_mask: ' + str(mask))
else:
raise TypeError('Layer ' + self.name + ' does not support masking, '
'but was passed an input_mask: ' + str(mask))
# masking not explicitly supported: return None as mask
return None
# if masking is explicitly supported, by default
# carry over the input mask
return mask
示例4: input
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def input(self):
"""Retrieves the input tensor(s) of a layer.
Only applicable if the layer has exactly one inbound node,
i.e. if it is connected to one incoming layer.
Returns:
Input tensor or list of input tensors.
Raises:
AttributeError: if the layer is connected to
more than one incoming layers.
"""
if len(self.inbound_nodes) > 1:
raise AttributeError('Layer ' + self.name +
' has multiple inbound nodes, '
'hence the notion of "layer input" '
'is ill-defined. '
'Use `get_input_at(node_index)` instead.')
elif not self.inbound_nodes:
raise AttributeError('Layer ' + self.name +
' is not connected, no input to return.')
return self._get_node_attribute_at_index(0, 'input_tensors', 'input')
示例5: input_mask
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def input_mask(self):
"""Retrieves the input mask tensor(s) of a layer.
Only applicable if the layer has exactly one inbound node,
i.e. if it is connected to one incoming layer.
Returns:
Input mask tensor (potentially None) or list of input
mask tensors.
Raises:
AttributeError: if the layer is connected to
more than one incoming layers.
"""
if len(self.inbound_nodes) != 1:
raise AttributeError('Layer ' + self.name +
' has multiple inbound nodes, ' +
'hence the notion of "layer input mask" '
'is ill-defined. '
'Use `get_input_mask_at(node_index)` '
'instead.')
return self._get_node_attribute_at_index(0, 'input_masks', 'input mask')
示例6: output_mask
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def output_mask(self):
"""Retrieves the output mask tensor(s) of a layer.
Only applicable if the layer has exactly one inbound node,
i.e. if it is connected to one incoming layer.
Returns:
Output mask tensor (potentially None) or list of output
mask tensors.
Raises:
AttributeError: if the layer is connected to
more than one incoming layers.
"""
if len(self.inbound_nodes) != 1:
raise AttributeError('Layer ' + self.name +
' has multiple inbound nodes, '
'hence the notion of "layer output mask" '
'is ill-defined. '
'Use `get_output_mask_at(node_index)` '
'instead.')
return self._get_node_attribute_at_index(0, 'output_masks', 'output mask')
示例7: input_spec
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def input_spec(self):
"""Gets the model's input specs.
Returns:
A list of `InputSpec` instances (one per input to the model)
or a single instance if the model has only one input.
"""
specs = []
for layer in getattr(self, 'input_layers', []):
if layer.input_spec is None:
specs.append(None)
else:
if not isinstance(layer.input_spec, list):
raise TypeError('Layer ' + layer.name +
' has an input_spec attribute that '
'is not a list. We expect a list. '
'Found input_spec = ' + str(layer.input_spec))
specs += layer.input_spec
if len(specs) == 1:
return specs[0]
return specs
示例8: __init__
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def __init__(self, cell, helper, initial_state, output_layer=None):
"""Initialize CustomDecoder.
Args:
cell: An `RNNCell` instance.
helper: A `Helper` instance.
initial_state: A (possibly nested tuple of...) tensors and TensorArrays.
The initial state of the RNNCell.
output_layer: (Optional) An instance of `tf.layers.Layer`, i.e.,
`tf.layers.Dense`. Optional layer to apply to the RNN output prior
to storing the result or sampling.
Raises:
TypeError: if `cell`, `helper` or `output_layer` have an incorrect type.
"""
if not rnn_cell_impl._like_rnncell(cell): # pylint: disable=protected-access
raise TypeError("cell must be an RNNCell, received: %s" % type(cell))
if not isinstance(helper, helper_py.Helper):
raise TypeError("helper must be a Helper, received: %s" % type(helper))
if (output_layer is not None
and not isinstance(output_layer, layers_base.Layer)):
raise TypeError(
"output_layer must be a Layer, received: %s" % type(output_layer))
self._cell = cell
self._helper = helper
self._initial_state = initial_state
self._output_layer = output_layer
示例9: __init__
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def __init__(self, cell, helper, initial_state, latent_vector, output_layer=None):
"""Initialize BasicDecoder.
Args:
cell: An `RNNCell` instance.
helper: A `Helper` instance.
initial_state: A (possibly nested tuple of...) tensors and TensorArrays.
The initial state of the RNNCell.
output_layer: (Optional) An instance of `tf.layers.Layer`, i.e.,
`tf.layers.Dense`. Optional layer to apply to the RNN output prior
to storing the result or sampling.
Raises:
TypeError: if `cell`, `helper` or `output_layer` have an incorrect type.
"""
if not rnn_cell_impl._like_rnncell(cell): # pylint: disable=protected-access
raise TypeError("cell must be an RNNCell, received: %s" % type(cell))
if not isinstance(helper, helper_py.Helper):
raise TypeError("helper must be a Helper, received: %s" % type(helper))
if (output_layer is not None and not isinstance(output_layer, layers_base.Layer)):
raise TypeError("output_layer must be a Layer, received: %s" % type(output_layer))
self._cell = cell
self._helper = helper
self._initial_state = initial_state
self._output_layer = output_layer
self._latent_vector = latent_vector
示例10: __init__
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def __init__(self, cell, helper, initial_state, output_layer=None):
"""Initialize CustomDecoder.
Args:
cell: An `RNNCell` instance.
helper: A `Helper` instance.
initial_state: A (possibly nested tuple of...) tensors and TensorArrays.
The initial state of the RNNCell.
output_layer: (Optional) An instance of `tf.layers.Layer`, i.e.,
`tf.layers.Dense`. Optional layer to apply to the RNN output prior
to storing the result or sampling.
Raises:
TypeError: if `cell`, `helper` or `output_layer` have an incorrect type.
"""
rnn_cell_impl.assert_like_rnncell(type(cell), cell)
if not isinstance(helper, helper_py.Helper):
raise TypeError("helper must be a Helper, received: %s" % type(helper))
if (output_layer is not None
and not isinstance(output_layer, layers_base.Layer)):
raise TypeError(
"output_layer must be a Layer, received: %s" % type(output_layer))
self._cell = cell
self._helper = helper
self._initial_state = initial_state
self._output_layer = output_layer
示例11: __init__
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def __init__(self, cell, helper, initial_state, output_layer=None):
"""Initialize CustomDecoder.
Args:
cell: An `RNNCell` instance.
helper: A `Helper` instance.
initial_state: A (possibly nested tuple of...) tensors and TensorArrays.
The initial state of the RNNCell.
output_layer: (Optional) An instance of `tf.layers.Layer`, i.e.,
`tf.layers.Dense`. Optional layer to apply to the RNN output prior
to storing the result or sampling.
Raises:
TypeError: if `cell`, `helper` or `output_layer` have an incorrect type.
"""
# rnn_cell_impl.assert_like_rnncell(type(cell), cell)
if not isinstance(helper, helper_py.Helper):
raise TypeError("helper must be a Helper, received: %s" % type(helper))
if (output_layer is not None
and not isinstance(output_layer, layers_base.Layer)):
raise TypeError(
"output_layer must be a Layer, received: %s" % type(output_layer))
self._cell = cell
self._helper = helper
self._initial_state = initial_state
self._output_layer = output_layer
示例12: build
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def build(self, _):
# This tells the parent Layer object that it's OK to call
# self.add_variable() inside the call() method.
pass
示例13: set_weights
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def set_weights(self, weights):
"""Sets the weights of the layer, from Numpy arrays.
Arguments:
weights: a list of Numpy arrays. The number
of arrays and their shape must match
number of the dimensions of the weights
of the layer (i.e. it should match the
output of `get_weights`).
Raises:
ValueError: If the provided weights list does not match the
layer's specifications.
"""
params = self.weights
if len(params) != len(weights):
raise ValueError('You called `set_weights(weights)` on layer "' +
self.name + '" with a weight list of length ' +
str(len(weights)) + ', but the layer was expecting ' +
str(len(params)) + ' weights. Provided weights: ' +
str(weights)[:50] + '...')
if not params:
return
weight_value_tuples = []
param_values = K.batch_get_value(params)
for pv, p, w in zip(param_values, params, weights):
if pv.shape != w.shape:
raise ValueError('Layer weight shape ' + str(pv.shape) +
' not compatible with '
'provided weight shape ' + str(w.shape))
weight_value_tuples.append((p, w))
K.batch_set_value(weight_value_tuples)
示例14: __init__
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def __init__(self, cell, helper, initial_state, output_layer=None):
"""Initialize BasicDecoder.
Args:
cell: An `RNNCell` instance.
helper: A `Helper` instance.
initial_state: A (possibly nested tuple of...) tensors and TensorArrays.
The initial state of the RNNCell.
output_layer: (Optional) An instance of `tf.layers.Layer`, i.e.,
`tf.layers.Dense`. Optional layer to apply to the RNN output prior
to storing the result or sampling.
Raises:
TypeError: if `cell`, `helper` or `output_layer` have an incorrect type.
"""
if not rnn_cell_impl._like_rnncell(cell): # pylint: disable=protected-access
raise TypeError("cell must be an RNNCell, received: %s" % type(cell))
if not isinstance(helper, helper_py.Helper):
raise TypeError("helper must be a Helper, received: %s" % type(helper))
if (output_layer is not None
and not isinstance(output_layer, layers_base.Layer)):
raise TypeError(
"output_layer must be a Layer, received: %s" % type(output_layer))
self._cell = cell
self._helper = helper
self._initial_state = initial_state
self._output_layer = output_layer
示例15: __init__
# 需要導入模塊: from tensorflow.python.layers import base [as 別名]
# 或者: from tensorflow.python.layers.base import Layer [as 別名]
def __init__(self, cell, helper, initial_state, latent_vector, output_layer=None):
"""Initialize BasicDecoder.
Args:
cell: An `RNNCell` instance.
helper: A `Helper` instance.
initial_state: A (possibly nested tuple of...) tensors and TensorArrays.
The initial state of the RNNCell.
output_layer: (Optional) An instance of `tf.layers.Layer`, i.e.,
`tf.layers.Dense`. Optional layer to apply to the RNN output prior
to storing the result or sampling.
Raises:
TypeError: if `cell`, `helper` or `output_layer` have an incorrect type.
"""
if not rnn_cell_impl._like_rnncell(cell): # pylint: disable=protected-access
raise TypeError("cell must be an RNNCell, received: %s" % type(cell))
if not isinstance(helper, helper_py.Helper):
raise TypeError("helper must be a Helper, received: %s" % type(helper))
if (output_layer is not None and not isinstance(output_layer, layers_base.Layer)):
raise TypeError("output_layer must be a Layer, received: %s" % type(output_layer))
self._cell = cell
self._helper = helper
self._initial_state = initial_state
self._output_layer = output_layer
self._latent_vector = latent_vector
self._intermediate_context_kl_loss = tf.zeros(shape=(helper.batch_size,)) # shape of (batch_size,)
# CHANGE-1: Variable to keep adding the c_kl_losses from each timestep