當前位置: 首頁>>代碼示例>>Python>>正文


Python regularizers.l2方法代碼示例

本文整理匯總了Python中tensorflow.python.keras.regularizers.l2方法的典型用法代碼示例。如果您正苦於以下問題:Python regularizers.l2方法的具體用法?Python regularizers.l2怎麽用?Python regularizers.l2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.keras.regularizers的用法示例。


在下文中一共展示了regularizers.l2方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def build(self, input_shape):
        input_size = input_shape[-1]
        hidden_units = [int(input_size)] + list(self.hidden_size)
        self.kernels = [self.add_weight(name='kernel' + str(i),
                                        shape=(
                                            hidden_units[i], hidden_units[i+1]),
                                        initializer=glorot_normal(
                                            seed=self.seed),
                                        regularizer=l2(self.l2_reg),
                                        trainable=True) for i in range(len(self.hidden_size))]
        self.bias = [self.add_weight(name='bias' + str(i),
                                     shape=(self.hidden_size[i],),
                                     initializer=Zeros(),
                                     trainable=True) for i in range(len(self.hidden_size))]

        super(MLP, self).build(input_shape)  # Be sure to call this somewhere! 
開發者ID:ShenDezhou,項目名稱:icme2019,代碼行數:18,代碼來源:core.py

示例2: call

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def call(self, inputs, training=None, **kwargs):

        deep_input = inputs

        for i in range(len(self.hidden_size)):
            fc = tf.nn.bias_add(tf.tensordot(
                deep_input, self.kernels[i], axes=(-1, 0)), self.bias[i])
            # fc = Dense(self.hidden_size[i], activation=None, \
            #           kernel_initializer=glorot_normal(seed=self.seed), \
            #           kernel_regularizer=l2(self.l2_reg))(deep_input)
            if self.use_bn:
                fc = tf.keras.layers.BatchNormalization()(fc)
            fc = activation_fun(self.activation, fc)
            #fc = tf.nn.dropout(fc, self.keep_prob)
            fc = tf.keras.layers.Dropout(1 - self.keep_prob)(fc,)
            deep_input = fc

        return deep_input 
開發者ID:ShenDezhou,項目名稱:icme2019,代碼行數:20,代碼來源:core.py

示例3: merge_dense_input

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def merge_dense_input(dense_input_, embed_list, embedding_size, l2_reg):
    dense_input = list(dense_input_.values())
    if len(dense_input) > 0:
        if embedding_size == "auto":
            if len(dense_input) == 1:
                continuous_embedding_list = dense_input[0]
            else:
                continuous_embedding_list = Concatenate()(dense_input)
            continuous_embedding_list = Reshape(
                [1, len(dense_input)])(continuous_embedding_list)
            embed_list.append(continuous_embedding_list)

        else:
            continuous_embedding_list = list(
                map(Dense(embedding_size, use_bias=False, kernel_regularizer=l2(l2_reg), ),
                    dense_input))
            continuous_embedding_list = list(
                map(Reshape((1, embedding_size)), continuous_embedding_list))
            embed_list += continuous_embedding_list

    return embed_list 
開發者ID:ShenDezhou,項目名稱:icme2019,代碼行數:23,代碼來源:input_embedding.py

示例4: get_linear_logit

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def get_linear_logit(linear_emb_list, dense_input_dict, l2_reg):
    if len(linear_emb_list) > 1:
        linear_term = add(linear_emb_list)
    elif len(linear_emb_list) == 1:
        linear_term = linear_emb_list[0]
    else:
        linear_term = None

    dense_input = list(dense_input_dict.values())
    if len(dense_input) > 0:
        dense_input__ = dense_input[0] if len(
            dense_input) == 1 else Concatenate()(dense_input)
        linear_dense_logit = Dense(
            1, activation=None, use_bias=False, kernel_regularizer=l2(l2_reg))(dense_input__)
        if linear_term is not None:
            linear_term = add([linear_dense_logit, linear_term])
        else:
            linear_term = linear_dense_logit

    return linear_term 
開發者ID:ShenDezhou,項目名稱:icme2019,代碼行數:22,代碼來源:input_embedding.py

示例5: __transition_block

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def __transition_block(ip, nb_filter, compression=1.0, weight_decay=1e-4):
    ''' Apply BatchNorm, Relu 1x1, Conv2D, optional compression, dropout and Maxpooling2D
    Args:
        ip: keras tensor
        nb_filter: number of filters
        compression: calculated as 1 - reduction. Reduces the number of feature maps
                    in the transition block.
        dropout_rate: dropout rate
        weight_decay: weight decay factor
    Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
    x = Activation('relu')(x)
    x = Conv2D(int(nb_filter * compression), (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)
    x = AveragePooling2D((2, 2), strides=(2, 2))(x)

    return x 
開發者ID:OlafenwaMoses,項目名稱:ImageAI,代碼行數:22,代碼來源:densenet.py

示例6: __transition_up_block

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def __transition_up_block(ip, nb_filters, type='deconv', weight_decay=1E-4):
    ''' SubpixelConvolutional Upscaling (factor = 2)
    Args:
        ip: keras tensor
        nb_filters: number of layers
        type: can be 'upsampling', 'subpixel', 'deconv'. Determines type of upsampling performed
        weight_decay: weight decay factor
    Returns: keras tensor, after applying upsampling operation.
    '''

    if type == 'upsampling':
        x = UpSampling2D()(ip)
    elif type == 'subpixel':
        x = Conv2D(nb_filters, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(weight_decay),
                   use_bias=False, kernel_initializer='he_normal')(ip)
        x = SubPixelUpscaling(scale_factor=2)(x)
        x = Conv2D(nb_filters, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(weight_decay),
                   use_bias=False, kernel_initializer='he_normal')(x)
    else:
        x = Conv2DTranspose(nb_filters, (3, 3), activation='relu', padding='same', strides=(2, 2),
                            kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay))(ip)

    return x 
開發者ID:OlafenwaMoses,項目名稱:ImageAI,代碼行數:25,代碼來源:densenet.py

示例7: _conv_bn_relu

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def _conv_bn_relu(**conv_params):
    """Helper to build a conv -> BN -> relu block
    """
    filters = conv_params["filters"]
    kernel_size = conv_params["kernel_size"]
    strides = conv_params.setdefault("strides", (1, 1))
    kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal")
    padding = conv_params.setdefault("padding", "same")
    kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.e-4))

    def f(input):
        conv = Conv2D(filters=filters, kernel_size=kernel_size,
                      strides=strides, padding=padding,
                      kernel_initializer=kernel_initializer,
                      kernel_regularizer=kernel_regularizer)(input)
        return _bn_relu(conv)

    return f 
開發者ID:marco-willi,項目名稱:camera-trap-classifier,代碼行數:20,代碼來源:resnet.py

示例8: _bn_relu_conv

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def _bn_relu_conv(**conv_params):
    """Helper to build a BN -> relu -> conv block.
    This is an improved scheme proposed in http://arxiv.org/pdf/1603.05027v2.pdf
    """
    filters = conv_params["filters"]
    kernel_size = conv_params["kernel_size"]
    strides = conv_params.setdefault("strides", (1, 1))
    kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal")
    padding = conv_params.setdefault("padding", "same")
    kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.e-4))

    def f(input):
        activation = _bn_relu(input)
        return Conv2D(filters=filters, kernel_size=kernel_size,
                      strides=strides, padding=padding,
                      kernel_initializer=kernel_initializer,
                      kernel_regularizer=kernel_regularizer)(activation)

    return f 
開發者ID:marco-willi,項目名稱:camera-trap-classifier,代碼行數:21,代碼來源:resnet.py

示例9: _shortcut

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def _shortcut(input, residual):
    """Adds a shortcut between input and residual block and merges them with "sum"
    """
    # Expand channels of shortcut to match residual.
    # Stride appropriately to match residual (width, height)
    # Should be int if network architecture is correctly configured.
    input_shape = K.int_shape(input)
    residual_shape = K.int_shape(residual)
    stride_width = int(round(input_shape[ROW_AXIS] / residual_shape[ROW_AXIS]))
    stride_height = int(round(input_shape[COL_AXIS] / residual_shape[COL_AXIS]))
    equal_channels = input_shape[CHANNEL_AXIS] == residual_shape[CHANNEL_AXIS]

    shortcut = input
    # 1 X 1 conv if shape is different. Else identity.
    if stride_width > 1 or stride_height > 1 or not equal_channels:
        shortcut = Conv2D(filters=residual_shape[CHANNEL_AXIS],
                          kernel_size=(1, 1),
                          strides=(stride_width, stride_height),
                          padding="valid",
                          kernel_initializer="he_normal",
                          kernel_regularizer=l2(0.0001))(input)

    return add([shortcut, residual]) 
開發者ID:marco-willi,項目名稱:camera-trap-classifier,代碼行數:25,代碼來源:resnet.py

示例10: basic_block

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def basic_block(filters, init_strides=(1, 1), is_first_block_of_first_layer=False):
    """Basic 3 X 3 convolution blocks for use on resnets with layers <= 34.
    Follows improved proposed scheme in http://arxiv.org/pdf/1603.05027v2.pdf
    """
    def f(input):

        if is_first_block_of_first_layer:
            # don't repeat bn->relu since we just did bn->relu->maxpool
            conv1 = Conv2D(filters=filters, kernel_size=(3, 3),
                           strides=init_strides,
                           padding="same",
                           kernel_initializer="he_normal",
                           kernel_regularizer=l2(1e-4))(input)
        else:
            conv1 = _bn_relu_conv(filters=filters, kernel_size=(3, 3),
                                  strides=init_strides)(input)

        residual = _bn_relu_conv(filters=filters, kernel_size=(3, 3))(conv1)
        return _shortcut(input, residual)

    return f 
開發者ID:marco-willi,項目名稱:camera-trap-classifier,代碼行數:23,代碼來源:resnet.py

示例11: bottleneck

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def bottleneck(filters, init_strides=(1, 1), is_first_block_of_first_layer=False):
    """Bottleneck architecture for > 34 layer resnet.
    Follows improved proposed scheme in http://arxiv.org/pdf/1603.05027v2.pdf

    Returns:
        A final conv layer of filters * 4
    """
    def f(input):

        if is_first_block_of_first_layer:
            # don't repeat bn->relu since we just did bn->relu->maxpool
            conv_1_1 = Conv2D(filters=filters, kernel_size=(1, 1),
                              strides=init_strides,
                              padding="same",
                              kernel_initializer="he_normal",
                              kernel_regularizer=l2(1e-4))(input)
        else:
            conv_1_1 = _bn_relu_conv(filters=filters, kernel_size=(1, 1),
                                     strides=init_strides)(input)

        conv_3_3 = _bn_relu_conv(filters=filters, kernel_size=(3, 3))(conv_1_1)
        residual = _bn_relu_conv(filters=filters * 4, kernel_size=(1, 1))(conv_3_3)
        return _shortcut(input, residual)

    return f 
開發者ID:marco-willi,項目名稱:camera-trap-classifier,代碼行數:27,代碼來源:resnet.py

示例12: build

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def build(self, input_shapes):

        if self.feature_less:
            input_dim = int(input_shapes[0][-1])
        else:
            assert len(input_shapes) == 2
            features_shape = input_shapes[0]

            input_dim = int(features_shape[-1])

        self.kernel = self.add_weight(shape=(input_dim,
                                             self.units),
                                      initializer=glorot_uniform(
                                          seed=self.seed),
                                      regularizer=l2(self.l2_reg),
                                      name='kernel', )
        if self.use_bias:
            self.bias = self.add_weight(shape=(self.units,),
                                        initializer=Zeros(),
                                        name='bias', )

        self.dropout = Dropout(self.dropout_rate, seed=self.seed)

        self.built = True 
開發者ID:shenweichen,項目名稱:GraphNeuralNetwork,代碼行數:26,代碼來源:gcn.py

示例13: build

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def build(self, input_shapes):

        self.dense_layers = [Dense(
            self.input_dim, activation='relu', use_bias=True, kernel_regularizer=l2(self.l2_reg))]

        self.neigh_weights = self.add_weight(
            shape=(self.input_dim * 2, self.output_dim),
            initializer=glorot_uniform(
                seed=self.seed),
            regularizer=l2(self.l2_reg),

            name="neigh_weights")

        if self.use_bias:
            self.bias = self.add_weight(shape=(self.output_dim,),
                                        initializer=Zeros(),
                                        name='bias_weight')

        self.built = True 
開發者ID:shenweichen,項目名稱:GraphNeuralNetwork,代碼行數:21,代碼來源:graphsage.py

示例14: create_embedding_dict

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def create_embedding_dict(sparse_feature_columns, varlen_sparse_feature_columns, seed, l2_reg,
                          prefix='sparse_', seq_mask_zero=True):
    sparse_embedding = {}
    for feat in sparse_feature_columns:
        emb = Embedding(feat.vocabulary_size, feat.embedding_dim,
                        embeddings_initializer=feat.embeddings_initializer,
                        embeddings_regularizer=l2(l2_reg),
                        name=prefix + '_emb_' + feat.embedding_name)
        emb.trainable = feat.trainable
        sparse_embedding[feat.embedding_name] = emb

    if varlen_sparse_feature_columns and len(varlen_sparse_feature_columns) > 0:
        for feat in varlen_sparse_feature_columns:
            # if feat.name not in sparse_embedding:
            emb = Embedding(feat.vocabulary_size, feat.embedding_dim,
                            embeddings_initializer=feat.embeddings_initializer,
                            embeddings_regularizer=l2(
                                l2_reg),
                            name=prefix + '_seq_emb_' + feat.name,
                            mask_zero=seq_mask_zero)
            emb.trainable = feat.trainable
            sparse_embedding[feat.embedding_name] = emb
    return sparse_embedding 
開發者ID:shenweichen,項目名稱:DeepCTR,代碼行數:25,代碼來源:inputs.py

示例15: build

# 需要導入模塊: from tensorflow.python.keras import regularizers [as 別名]
# 或者: from tensorflow.python.keras.regularizers import l2 [as 別名]
def build(self, input_shape):
        # if len(self.hidden_units) == 0:
        #     raise ValueError("hidden_units is empty")
        input_size = input_shape[-1]
        hidden_units = [int(input_size)] + list(self.hidden_units)
        self.kernels = [self.add_weight(name='kernel' + str(i),
                                        shape=(
                                            hidden_units[i], hidden_units[i + 1]),
                                        initializer=glorot_normal(
                                            seed=self.seed),
                                        regularizer=l2(self.l2_reg),
                                        trainable=True) for i in range(len(self.hidden_units))]
        self.bias = [self.add_weight(name='bias' + str(i),
                                     shape=(self.hidden_units[i],),
                                     initializer=Zeros(),
                                     trainable=True) for i in range(len(self.hidden_units))]
        if self.use_bn:
            self.bn_layers = [tf.keras.layers.BatchNormalization() for _ in range(len(self.hidden_units))]

        self.dropout_layers = [tf.keras.layers.Dropout(self.dropout_rate, seed=self.seed + i) for i in
                               range(len(self.hidden_units))]

        self.activation_layers = [activation_layer(self.activation) for _ in range(len(self.hidden_units))]

        super(DNN, self).build(input_shape)  # Be sure to call this somewhere! 
開發者ID:shenweichen,項目名稱:DeepCTR,代碼行數:27,代碼來源:core.py


注:本文中的tensorflow.python.keras.regularizers.l2方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。