當前位置: 首頁>>代碼示例>>Python>>正文


Python image.img_to_array方法代碼示例

本文整理匯總了Python中tensorflow.python.keras.preprocessing.image.img_to_array方法的典型用法代碼示例。如果您正苦於以下問題:Python image.img_to_array方法的具體用法?Python image.img_to_array怎麽用?Python image.img_to_array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.keras.preprocessing.image的用法示例。


在下文中一共展示了image.img_to_array方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_img

# 需要導入模塊: from tensorflow.python.keras.preprocessing import image [as 別名]
# 或者: from tensorflow.python.keras.preprocessing.image import img_to_array [as 別名]
def load_img(path_to_img):

  max_dim  = 512
  img      = Image.open(path_to_img)
  img_size = max(img.size)
  scale    = max_dim/img_size
  img      = img.resize((round(img.size[0]*scale), round(img.size[1]*scale)), Image.ANTIALIAS)

  img      = kp_image.img_to_array(img)

  # We need to broadcast the image array such that it has a batch dimension 
  img = np.expand_dims(img, axis=0)

  # preprocess raw images to make it suitable to be used by VGG19 model
  out = tf.keras.applications.vgg19.preprocess_input(img)

  return tf.convert_to_tensor(out) 
開發者ID:Shashi456,項目名稱:Neural-Style,代碼行數:19,代碼來源:train_TensorFlow.py

示例2: run_inference

# 需要導入模塊: from tensorflow.python.keras.preprocessing import image [as 別名]
# 或者: from tensorflow.python.keras.preprocessing.image import img_to_array [as 別名]
def run_inference():
    model = ResNet50(input_shape=(224, 224, 3), num_classes=10)
    model.load_weights(MODEL_PATH)

    picture = os.path.join(execution_path, "Haitian-fireman.jpg")

    image_to_predict = image.load_img(picture, target_size=(
        224, 224))
    image_to_predict = image.img_to_array(image_to_predict, data_format="channels_last")
    image_to_predict = np.expand_dims(image_to_predict, axis=0)

    image_to_predict = preprocess_input(image_to_predict)

    prediction = model.predict(x=image_to_predict, steps=1)

    predictiondata = decode_predictions(prediction, top=int(5), model_json=JSON_PATH)

    for result in predictiondata:
        print(str(result[0]), " : ", str(result[1] * 100))


# run_inference() 
開發者ID:OlafenwaMoses,項目名稱:IdenProf,代碼行數:24,代碼來源:idenprof.py

示例3: preprocess_image

# 需要導入模塊: from tensorflow.python.keras.preprocessing import image [as 別名]
# 或者: from tensorflow.python.keras.preprocessing.image import img_to_array [as 別名]
def preprocess_image(path):
        '''Process an image to numpy array.

        Args:
            path: the path of the image.

        Returns:
            Numpy array of the image.
        '''
        img = process_image.load_img(path, target_size=(224, 224))
        x = process_image.img_to_array(img)
        # x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)
        return x 
開發者ID:ryanfwy,項目名稱:image-similarity,代碼行數:16,代碼來源:model_util.py

示例4: get_activations

# 需要導入模塊: from tensorflow.python.keras.preprocessing import image [as 別名]
# 或者: from tensorflow.python.keras.preprocessing.image import img_to_array [as 別名]
def get_activations(model, img_collection):
    activations = []
    for idx, img in enumerate(img_collection):
        if idx == to_plot:
            break;
        print("Processing image {}".format(idx+1))
        img = img.resize((224, 224), Image.ANTIALIAS)
        x = image.img_to_array(img)
        x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)
        activations.append(np.squeeze(model.predict(x)))
    return activations 
開發者ID:prabodhhere,項目名稱:tsne-grid,代碼行數:14,代碼來源:tsne_grid.py

示例5: save_tsne_grid

# 需要導入模塊: from tensorflow.python.keras.preprocessing import image [as 別名]
# 或者: from tensorflow.python.keras.preprocessing.image import img_to_array [as 別名]
def save_tsne_grid(img_collection, X_2d, out_res, out_dim):
    grid = np.dstack(np.meshgrid(np.linspace(0, 1, out_dim), np.linspace(0, 1, out_dim))).reshape(-1, 2)
    cost_matrix = cdist(grid, X_2d, "sqeuclidean").astype(np.float32)
    cost_matrix = cost_matrix * (100000 / cost_matrix.max())
    row_asses, col_asses, _ = lapjv(cost_matrix)
    grid_jv = grid[col_asses]
    out = np.ones((out_dim*out_res, out_dim*out_res, 3))

    for pos, img in zip(grid_jv, img_collection[0:to_plot]):
        h_range = int(np.floor(pos[0]* (out_dim - 1) * out_res))
        w_range = int(np.floor(pos[1]* (out_dim - 1) * out_res))
        out[h_range:h_range + out_res, w_range:w_range + out_res]  = image.img_to_array(img)

    im = image.array_to_img(out)
    im.save(out_dir + out_name, quality=100) 
開發者ID:prabodhhere,項目名稱:tsne-grid,代碼行數:17,代碼來源:tsne_grid.py

示例6: _get_batches_of_transformed_samples

# 需要導入模塊: from tensorflow.python.keras.preprocessing import image [as 別名]
# 或者: from tensorflow.python.keras.preprocessing.image import img_to_array [as 別名]
def _get_batches_of_transformed_samples(self, index_array):
        batch_x = np.zeros(
            (len(index_array),) + self.image_shape,
            dtype=floatx())
        grayscale = self.color_mode == 'grayscale'

        # Build batch of image data
        for i, j in enumerate(index_array):
            fname = self.filenames[j]
            img = load_img(
                os.path.join(self.directory, fname),
                grayscale=grayscale,
                target_size=None,
                interpolation=self.interpolation)
            x = img_to_array(img, data_format=self.data_format)

            # Pillow images should be closed after `load_img`, but not PIL images.
            if hasattr(img, 'close'):
                img.close()

            x = self.image_data_generator.standardize(x)
            batch_x[i] = x

        # Optionally save augmented images to disk for debugging purposes
        if self.save_to_dir:
            for i, j in enumerate(index_array):
                img = array_to_img(batch_x[i], self.data_format, scale=True)
                fname = '{prefix}_{index}_{hash}.{format}'.format(
                    prefix=self.save_prefix,
                    index=j,
                    hash=np.random.randint(1e7),
                    format=self.save_format)
                img.save(os.path.join(self.save_to_dir, fname))

        # Build batch of labels
        if self.class_mode == 'input':
            batch_y = batch_x.copy()
        elif self.class_mode == 'sparse':
            batch_y = self.classes[index_array]
        elif self.class_mode == 'binary':
            batch_y = self.classes[index_array].astype(floatx())
        elif self.class_mode == 'categorical':
            batch_y = np.zeros(
                (len(batch_x), self.num_classes),
                dtype=floatx())
            for i, label in enumerate(self.classes[index_array]):
                batch_y[i, label] = 1.
        else:
            return batch_x

        return batch_x, batch_y 
開發者ID:ryanfwy,項目名稱:BCNN-keras-clean,代碼行數:53,代碼來源:data_preprocesser.py


注:本文中的tensorflow.python.keras.preprocessing.image.img_to_array方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。