當前位置: 首頁>>代碼示例>>Python>>正文


Python models.Sequential方法代碼示例

本文整理匯總了Python中tensorflow.python.keras.models.Sequential方法的典型用法代碼示例。如果您正苦於以下問題:Python models.Sequential方法的具體用法?Python models.Sequential怎麽用?Python models.Sequential使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.keras.models的用法示例。


在下文中一共展示了models.Sequential方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: keras_estimator

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Sequential [as 別名]
def keras_estimator(model_dir, config, learning_rate, vocab_size):
  """Creates a Keras Sequential model with layers.

  Args:
    model_dir: (str) file path where training files will be written.
    config: (tf.estimator.RunConfig) Configuration options to save model.
    learning_rate: (int) Learning rate.
    vocab_size: (int) Size of the vocabulary in number of words.

  Returns:
      A keras.Model
  """
  model = models.Sequential()
  model.add(Embedding(vocab_size, 16))
  model.add(GlobalAveragePooling1D())
  model.add(Dense(16, activation=tf.nn.relu))
  model.add(Dense(1, activation=tf.nn.sigmoid))

  # Compile model with learning parameters.
  optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
  model.compile(
      optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
  estimator = tf.keras.estimator.model_to_estimator(
      keras_model=model, model_dir=model_dir, config=config)
  return estimator 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:27,代碼來源:model.py

示例2: crnn_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Sequential [as 別名]
def crnn_model(width=100, n_vars=6, n_classes=7, conv_kernel_size=5,
               conv_filters=3, lstm_units=3):
    input_shape = (width, n_vars)
    model = Sequential()
    model.add(Conv1D(filters=conv_filters, kernel_size=conv_kernel_size,
                     padding='valid', activation='relu', input_shape=input_shape))
    model.add(Conv1D(filters=conv_filters, kernel_size=conv_kernel_size,
                     padding='valid', activation='relu'))
    model.add(LSTM(units=lstm_units, dropout=0.1, recurrent_dropout=0.1))
    model.add(Dense(n_classes, activation="softmax"))

    model.compile(loss='categorical_crossentropy', optimizer='adam',
                  metrics=['accuracy'])

    return model


# load the data 
開發者ID:dmbee,項目名稱:seglearn,代碼行數:20,代碼來源:plot_segment_rep.py

示例3: crnn_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Sequential [as 別名]
def crnn_model(width=100, n_vars=6, n_classes=7, conv_kernel_size=5,
               conv_filters=2, lstm_units=2):
    # create a crnn model with keras with one cnn layers, and one rnn layer
    input_shape = (width, n_vars)
    model = Sequential()
    model.add(Conv1D(filters=conv_filters, kernel_size=conv_kernel_size,
                     padding='valid', activation='relu', input_shape=input_shape))
    model.add(LSTM(units=lstm_units, dropout=0.1, recurrent_dropout=0.1))
    model.add(Dense(n_classes, activation="softmax"))

    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

    return model


# load the data 
開發者ID:dmbee,項目名稱:seglearn,代碼行數:18,代碼來源:plot_model_selection2.py

示例4: crnn_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Sequential [as 別名]
def crnn_model(width=100, n_vars=6, n_classes=7, conv_kernel_size=5,
               conv_filters=3, lstm_units=3):
    input_shape = (width, n_vars)
    model = Sequential()
    model.add(Conv1D(filters=conv_filters, kernel_size=conv_kernel_size,
                     padding='valid', activation='relu', input_shape=input_shape))
    model.add(LSTM(units=lstm_units, dropout=0.1, recurrent_dropout=0.1))
    model.add(Dense(n_classes, activation="softmax"))

    model.compile(loss='categorical_crossentropy', optimizer='adam',
                  metrics=['accuracy'])

    return model


##############################################
# Setup
##############################################

# load the data 
開發者ID:dmbee,項目名稱:seglearn,代碼行數:22,代碼來源:plot_nn_training_curves.py

示例5: set_last_layer_to_random

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Sequential [as 別名]
def set_last_layer_to_random(model_trained, model_random):
    """ Set all layers with and after layer_name to random """

    logging.info("Replacing layers of model with random layers")

    layer_names = [x.name for x in model_trained.layers]
    layer = layer_names[-1]

    # find layers which have to be kept unchanged
    id_to_set_random = layer_names.index(layer)

    # combine old, trained layers with new random layers
    comb_layers = model_trained.layers[0:id_to_set_random]
    new_layers = model_random.layers[id_to_set_random:]
    comb_layers.extend(new_layers)

    # define new model
    new_model = Sequential(comb_layers)

    # print layers of new model
    for layer, i in zip(new_model.layers, range(0, len(new_model.layers))):
        logging.info("New model - layer %s: %s" % (i, layer.name))

    return new_model 
開發者ID:marco-willi,項目名稱:camera-trap-classifier,代碼行數:26,代碼來源:prepare_model.py

示例6: keras_estimator

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Sequential [as 別名]
def keras_estimator(model_dir, config, params):
	"""Creates a Keras Sequential model with layers.

	Mean Squared Error (MSE) is a common loss function used for regression.
	A common regression metric is Mean Absolute Error (MAE).

	Args:
		model_dir: (str) file path where training files will be written.
		config: (tf.estimator.RunConfig) Configuration options to save model.
		params: (dict)

	Returns:
		A keras.Model
	"""
	model = models.Sequential()
	model.add(
		Dense(64, activation=tf.nn.relu, input_shape=(params['num_features'],)))
	model.add(Dense(64, activation=tf.nn.relu))
	model.add(Dense(1))

	# Compile model with learning parameters.
	optimizer = tf.train.RMSPropOptimizer(learning_rate=params['learning_rate'])
	model.compile(optimizer=optimizer, loss='mse', metrics=['mae'])

	return tf.keras.estimator.model_to_estimator(
		keras_model=model, model_dir=model_dir, config=config) 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:28,代碼來源:model.py

示例7: keras_estimator

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Sequential [as 別名]
def keras_estimator(model_dir, config, learning_rate):
  """Creates a Keras Sequential model with layers.

  Args:
    model_dir: (str) file path where training files will be written.
    config: (tf.estimator.RunConfig) Configuration options to save model.
    learning_rate: (int) Learning rate.

  Returns:
    A keras.Model
  """
  model = models.Sequential()
  model.add(Flatten(input_shape=(28, 28)))
  model.add(Dense(128, activation=tf.nn.relu))
  model.add(Dense(10, activation=tf.nn.softmax))

  # Compile model with learning parameters.
  optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
  model.compile(
      optimizer=optimizer,
      loss='sparse_categorical_crossentropy',
      metrics=['accuracy'])

  estimator = tf.keras.estimator.model_to_estimator(
      keras_model=model, model_dir=model_dir, config=config)
  return estimator 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:28,代碼來源:model.py

示例8: set_specific_layers_to_random

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Sequential [as 別名]
def set_specific_layers_to_random(model_trained, model_random, layer):
    """ Set all layers with and after layer_name to random """

    logging.info("Replacing layers of model with random layers")

    layer_names = [x.name for x in model_trained.layers]

    # check if target layer is in model
    if layer not in layer_names:
        logging.error("Layer %s not in model.layers" % layer)
        logging.error("Available Layers %s" % layer_names)
        raise IOError("Layer %s not in model.layers" % layer)

    # find layers which have to be kept unchanged
    id_to_set_random = layer_names.index(layer)

    # combine old, trained layers with new random layers
    comb_layers = model_trained.layers[0:id_to_set_random]
    new_layers = model_random.layers[id_to_set_random:]
    comb_layers.extend(new_layers)

    # define new model
    new_model = Sequential(comb_layers)

    # print layers of new model
    for layer, i in zip(new_model.layers, range(0, len(new_model.layers))):
        logging.debug("New model - layer %s: %s" % (i, layer.name))

    return new_model 
開發者ID:marco-willi,項目名稱:camera-trap-classifier,代碼行數:31,代碼來源:prepare_model.py

示例9: _assert_valid_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Sequential [as 別名]
def _assert_valid_model(model, custom_objects=None):
  is_subclass = (not model._is_graph_network and
                 not isinstance(model, models.Sequential))
  if is_subclass:
    try:
      custom_objects = custom_objects or {}
      with tf.keras.utils.CustomObjectScope(custom_objects):
        model.__class__.from_config(model.get_config())
    except NotImplementedError:
      raise ValueError(
          'Subclassed `Model`s passed to `model_to_estimator` must '
          'implement `Model.get_config` and `Model.from_config`.') 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:14,代碼來源:keras.py

示例10: build_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Sequential [as 別名]
def build_model():
    base_model = VGG16(weights='imagenet')
    top_model = Sequential()
    top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
    return Model(inputs=base_model.input, outputs=top_model(base_model.output)) 
開發者ID:prabodhhere,項目名稱:tsne-grid,代碼行數:7,代碼來源:tsne_grid.py

示例11: model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Sequential [as 別名]
def model(train_x, train_y, test_x, test_y, epoch):
    '''

    :param train_x: train features
    :param train_y: train labels
    :param test_x:  test features
    :param test_y: test labels
    :param epoch: no. of epochs
    :return:
    '''
    conv_model = Sequential()
    # first layer with input shape (img_rows, img_cols, 1) and 12 filters
    conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu',
                          input_shape=(img_rows, img_cols, 1)))
    # second layer with 12 filters
    conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu'))
    # third layer with 12 filers
    conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu'))
    # flatten layer
    conv_model.add(Flatten())
    # adding a Dense layer
    conv_model.add(Dense(100, activation='relu'))
    # adding the final Dense layer with softmax
    conv_model.add(Dense(num_classes, activation='softmax'))

    # compile the model
    conv_model.compile(optimizer=keras.optimizers.Adadelta(),
                       loss='categorical_crossentropy',
                       metrics=['accuracy'])
    print("\n Training the Convolution Neural Network on MNIST data\n")
    # fit the model
    conv_model.fit(train_x, train_y, batch_size=128, epochs=epoch,
                   validation_split=0.1, verbose=2)
    predicted_train_y = conv_model.predict(train_x)
    train_accuracy = (sum(np.argmax(predicted_train_y, axis=1)
                          == np.argmax(train_y, axis=1))/(float(len(train_y))))
    print('Train accuracy : ', train_accuracy)
    predicted_test_y = conv_model.predict(test_x)
    test_accuracy = (sum(np.argmax(predicted_test_y, axis=1)
                         == np.argmax(test_y, axis=1))/(float(len(test_y))))
    print('Test accuracy : ', test_accuracy)
    CNN_accuracy = {'train_accuracy': train_accuracy,
                    'test_accuracy': test_accuracy, 'epoch': epoch}
    return conv_model, CNN_accuracy 
開發者ID:aliakbar09a,項目名稱:mnist_digits_classification,代碼行數:46,代碼來源:conv_network.py


注:本文中的tensorflow.python.keras.models.Sequential方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。