當前位置: 首頁>>代碼示例>>Python>>正文


Python models.Model方法代碼示例

本文整理匯總了Python中tensorflow.python.keras.models.Model方法的典型用法代碼示例。如果您正苦於以下問題:Python models.Model方法的具體用法?Python models.Model怎麽用?Python models.Model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.keras.models的用法示例。


在下文中一共展示了models.Model方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def create_model(node_size, hidden_size=[256, 128], l1=1e-5, l2=1e-4):
    A = Input(shape=(node_size,))
    L = Input(shape=(None,))
    fc = A
    for i in range(len(hidden_size)):
        if i == len(hidden_size) - 1:
            fc = Dense(hidden_size[i], activation='relu',
                       kernel_regularizer=l1_l2(l1, l2), name='1st')(fc)
        else:
            fc = Dense(hidden_size[i], activation='relu',
                       kernel_regularizer=l1_l2(l1, l2))(fc)
    Y = fc
    for i in reversed(range(len(hidden_size) - 1)):
        fc = Dense(hidden_size[i], activation='relu',
                   kernel_regularizer=l1_l2(l1, l2))(fc)

    A_ = Dense(node_size, 'relu', name='2nd')(fc)
    model = Model(inputs=[A, L], outputs=[A_, Y])
    emb = Model(inputs=A, outputs=Y)
    return model, emb 
開發者ID:shenweichen,項目名稱:GraphEmbedding,代碼行數:22,代碼來源:sdne.py

示例2: _build_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def _build_model(embedding_weights, char_bidirectional=False, concat_bidirectional=True):
    word_emb_input, word_emb_output, char_emb_input, char_emb_output = _build_embeddings(embedding_weights, char_bidirectional)
    # concatenate word embedding and character embedding
    x = concatenate([word_emb_output, char_emb_output])
    x = Dropout(dropout)(x)
    # construct LSTM layers. Option to use 1 Bidirectonal layer, or one forward and one backward LSTM layer.
    # Empirical results appear better with bidirectional LSTM here, hence it is the default.
    if concat_bidirectional:
        x = Bidirectional(LSTM(hidden_size_lstm, return_sequences=True))(x)
    else:
        fw_LSTM_2 = LSTM(hidden_size_lstm, return_sequences=True)(x)
        bw_LSTM_2 = LSTM(hidden_size_lstm, return_sequences=True, go_backwards=True)(fw_LSTM_2)
        x = concatenate([fw_LSTM_2, bw_LSTM_2])

    x = Dropout(dropout)(x)
    scores = Dense(n_labels)(x)
    # Activation Function
    x = Activation("softmax", name='predict_output')(scores)
    # create model
    model = Model([word_emb_input, char_emb_input], x)
    return model


# === Build model === 
開發者ID:IBM,項目名稱:MAX-Named-Entity-Tagger,代碼行數:26,代碼來源:train_ner.py

示例3: load_model_and_replace_output

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def load_model_and_replace_output(model_old, model_new, new_output_layer):
    """ Load a model and replace the last layer """

    new_input = model_old.input

    # get old model output before last layer
    old_output = model_old.layers[-2].output

    # create a new output layer
    new_output = (new_output_layer)(old_output)

    # combine old model with new output layer
    new_model = Model(inputs=new_input,
                      outputs=new_output)

    logging.info("Replacing output layer of model")

    # print layers of old model
    for layer, i in zip(new_model.layers, range(0, len(new_model.layers))):
        logging.info("Old model - layer %s: %s" % (i, layer.name))

    return new_model 
開發者ID:marco-willi,項目名稱:camera-trap-classifier,代碼行數:24,代碼來源:prepare_model.py

示例4: GCN

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def GCN(adj_dim,feature_dim,n_hidden, num_class, num_layers=2,activation=tf.nn.relu,dropout_rate=0.5, l2_reg=0, feature_less=True, ):
    Adj = Input(shape=(None,), sparse=True)
    if feature_less:
        X_in = Input(shape=(1,), )

        emb = Embedding(adj_dim, feature_dim,
                        embeddings_initializer=Identity(1.0), trainable=False)
        X_emb = emb(X_in)
        h = Reshape([X_emb.shape[-1]])(X_emb)
    else:
        X_in = Input(shape=(feature_dim,), )

        h = X_in

    for i in range(num_layers):
        if i == num_layers - 1:
            activation = tf.nn.softmax
            n_hidden = num_class
        h = GraphConvolution(n_hidden, activation=activation, dropout_rate=dropout_rate, l2_reg=l2_reg)([h,Adj])

    output = h
    model = Model(inputs=[X_in,Adj], outputs=output)

    return model 
開發者ID:shenweichen,項目名稱:GraphNeuralNetwork,代碼行數:26,代碼來源:gcn.py

示例5: __init__

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def __init__(self, actions):
        '''
        Utility Model class to construct child models provided with an action list.
        
        # Args:
            actions: list of [input; action] pairs that define the cell. 
        '''
        super(ModelGenerator, self).__init__()

        self.B = len(actions) // 4
        self.action_list = np.split(np.array(actions), len(actions) // 2)

        self.global_counter = 0

        self.cell_1 = self.build_cell(self.B, self.action_list, filters=32, stride=(2, 2))
        self.cell_2 = self.build_cell(self.B, self.action_list, filters=64, stride=(2, 2))

        self.gap = GlobalAveragePooling2D()
        self.logits = Dense(10, activation='softmax') # only logits 
開發者ID:titu1994,項目名稱:progressive-neural-architecture-search,代碼行數:21,代碼來源:model.py

示例6: create_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def create_model(numNodes, embedding_size, order='second'):

    v_i = Input(shape=(1,))
    v_j = Input(shape=(1,))

    first_emb = Embedding(numNodes, embedding_size, name='first_emb')
    second_emb = Embedding(numNodes, embedding_size, name='second_emb')
    context_emb = Embedding(numNodes, embedding_size, name='context_emb')

    v_i_emb = first_emb(v_i)
    v_j_emb = first_emb(v_j)

    v_i_emb_second = second_emb(v_i)
    v_j_context_emb = context_emb(v_j)

    first = Lambda(lambda x: tf.reduce_sum(
        x[0]*x[1], axis=-1, keep_dims=False), name='first_order')([v_i_emb, v_j_emb])
    second = Lambda(lambda x: tf.reduce_sum(
        x[0]*x[1], axis=-1, keep_dims=False), name='second_order')([v_i_emb_second, v_j_context_emb])

    if order == 'first':
        output_list = [first]
    elif order == 'second':
        output_list = [second]
    else:
        output_list = [first, second]

    model = Model(inputs=[v_i, v_j], outputs=output_list)

    return model, {'first': first_emb, 'second': second_emb} 
開發者ID:shenweichen,項目名稱:GraphEmbedding,代碼行數:32,代碼來源:line.py

示例7: save_model_to_tensorflow

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def save_model_to_tensorflow(self, new_model_folder, new_model_name=""):

        """
        'save_model_to_tensorflow' function allows you to save your loaded Keras (.h5) model and save it to the Tensorflow (.pb) model format.
        - new_model_folder (required), the path to the folder you want the converted Tensorflow model to be saved
        - new_model_name (required), the desired filename for your converted Tensorflow model e.g 'my_new_model.pb'

        :param new_model_folder:
        :param new_model_name:
        :return:
        """

        if(self.__modelLoaded == True):
            out_prefix = "output_"
            output_dir = new_model_folder
            if os.path.exists(output_dir) == False:
                os.mkdir(output_dir)
            model_name = os.path.join(output_dir, new_model_name)

            keras_model = self.__model_collection[0]


            out_nodes = []

            for i in range(len(keras_model.outputs)):
                out_nodes.append(out_prefix + str(i + 1))
                tf.identity(keras_model.output[i], out_prefix + str(i + 1))

            sess = K.get_session()

            from tensorflow.python.framework import graph_util, graph_io

            init_graph = sess.graph.as_graph_def()

            main_graph = graph_util.convert_variables_to_constants(sess, init_graph, out_nodes)

            graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False)
            print("Tensorflow Model Saved") 
開發者ID:OlafenwaMoses,項目名稱:ImageAI,代碼行數:40,代碼來源:__init__.py

示例8: save_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def save_model(
        size_height=448,
        size_width=448,
        no_class=200
    ):
    '''Save Bilinear CNN to current directory.

    The model will be saved as `model.json`.

    Args:
        size_height: default 448.
        size_width: default 448.
        no_class: number of prediction classes.

    Returns:
        Bilinear CNN model.
    '''
    model = buil_bcnn(
        size_height=size_height,
        size_width=size_width,
        no_class=no_class)

    # Save model json
    model_json = model.to_json()
    with open('./model.json', 'w') as f:
        f.write(model_json)

    print('Model is saved to ./model.json')

    return True 
開發者ID:ryanfwy,項目名稱:BCNN-keras-clean,代碼行數:32,代碼來源:model_builder.py

示例9: export_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def export_model(self):
        with tempfile.TemporaryDirectory() as tmp_path:
            # try:
            #     # LOGGER.info("Model saved with model.save method.")
            #     tf.keras.models.save_model(self._model, filepath=tmp_path, save_format="tf")
            # except NotImplementedError:
            #     import warnings
            #     warnings.warn('Saving the model as SavedModel is still in experimental stages. '
            #                   'trying tf.keras.experimental.export_saved_model...')
            tf.keras.experimental.export_saved_model(self._model, saved_model_path=tmp_path)

            model_bytes = zip_dir_as_bytes(tmp_path)

        return model_bytes 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:16,代碼來源:backend.py

示例10: export_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def export_model(self):
        with tempfile.TemporaryDirectory() as tmp_path:
            # Comment this block because tf 1.15 is not supporting Keras Customized Layer
            # try:
            #     # LOGGER.info("Model saved with model.save method.")
            #     tf.keras.models.save_model(self._model, filepath=tmp_path, save_format="tf")
            # except NotImplementedError:
            #     import warnings
            #     warnings.warn('Saving the model as SavedModel is still in experimental stages. '
            #                   'trying tf.keras.experimental.export_saved_model...')
            tf.keras.experimental.export_saved_model(self._model, saved_model_path=tmp_path)

            model_bytes = zip_dir_as_bytes(tmp_path)

        return model_bytes 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:17,代碼來源:backend.py

示例11: __init__

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def __init__(self, encoderArchitecture, 
                 decoderArchitecture):

        self.encoder = encoderArchitecture.model
        self.decoder = decoderArchitecture.model

        self.ae = Model(self.encoder.inputs, self.decoder(self.encoder.outputs)) 
開發者ID:alecGraves,項目名稱:BVAE-tf,代碼行數:9,代碼來源:ae.py

示例12: test_mnist_unet_with_shape_valid

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def test_mnist_unet_with_shape_valid(self):
        num_subsamples = 100
        (x_train, y_train), (x_test, y_test) = TestUtil.get_mnist(flattened=False, num_subsamples=num_subsamples)

        explained_model_builder = MLPModelBuilder(num_layers=2, num_units=64, activation="relu", p_dropout=0.2,
                                                  verbose=0, batch_size=256, learning_rate=0.001, num_epochs=2,
                                                  early_stopping_patience=128)
        input_shape = x_train.shape[1:]
        input_layer = Input(shape=input_shape)
        last_layer = Flatten()(input_layer)
        last_layer = explained_model_builder.build(last_layer)
        last_layer = Dense(y_train.shape[-1], activation="softmax")(last_layer)
        explained_model = Model(input_layer, last_layer)
        explained_model.compile(loss="categorical_crossentropy",
                                optimizer="adam")
        explained_model.fit(x_train, y_train)
        masking_operation = ZeroMasking()
        loss = categorical_crossentropy

        downsample_factors = [(2, 2), (4, 4), (4, 7), (7, 4), (7, 7)]
        with_bns = [True if i % 2 == 0 else False for i in range(len(downsample_factors))]
        for downsample_factor, with_bn in zip(downsample_factors, with_bns):
            model_builder = UNetModelBuilder(downsample_factor, num_layers=2, num_units=64, activation="relu",
                                             p_dropout=0.2, verbose=0, batch_size=256, learning_rate=0.001,
                                             num_epochs=2, early_stopping_patience=128, with_bn=with_bn)

            explainer = CXPlain(explained_model, model_builder, masking_operation, loss,
                                downsample_factors=downsample_factor)

            explainer.fit(x_train, y_train)
            eval_score = explainer.score(x_test, y_test)
            train_score = explainer.get_last_fit_score()
            median = explainer.predict(x_test)
            self.assertTrue(median.shape == x_test.shape) 
開發者ID:d909b,項目名稱:cxplain,代碼行數:36,代碼來源:test_explanation_model.py

示例13: trivial_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def trivial_model(num_classes):
  """Trivial model for ImageNet dataset."""

  input_shape = (224, 224, 3)
  img_input = layers.Input(shape=input_shape)

  x = layers.Lambda(lambda x: backend.reshape(x, [-1, 224 * 224 * 3]),
                    name='reshape')(img_input)
  x = layers.Dense(1, name='fc1')(x)
  x = layers.Dense(num_classes, name='fc1000')(x)
  x = layers.Activation('softmax', dtype='float32')(x)

  return models.Model(img_input, x, name='trivial') 
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:15,代碼來源:trivial_model.py

示例14: is_multi_gpu_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def is_multi_gpu_model(model):
    """ Check if a specific model is a multi_gpu model by checking if one of
        the layers is a keras model itself
    """
    for layer in model.layers:
        if isinstance(layer, Model):
            return True
    return False 
開發者ID:marco-willi,項目名稱:camera-trap-classifier,代碼行數:10,代碼來源:utils.py

示例15: get_gpu_base_model

# 需要導入模塊: from tensorflow.python.keras import models [as 別名]
# 或者: from tensorflow.python.keras.models import Model [as 別名]
def get_gpu_base_model(model):
    """ get multi_gpu base model
    """
    for layer in model.layers:
        if isinstance(layer, Model):
            return layer
    return None 
開發者ID:marco-willi,項目名稱:camera-trap-classifier,代碼行數:9,代碼來源:utils.py


注:本文中的tensorflow.python.keras.models.Model方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。