當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Flatten方法代碼示例

本文整理匯總了Python中tensorflow.python.keras.layers.Flatten方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Flatten方法的具體用法?Python layers.Flatten怎麽用?Python layers.Flatten使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.keras.layers的用法示例。


在下文中一共展示了layers.Flatten方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _build_flatten

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 別名]
def _build_flatten(data_format=None, **kwargs):
    return layers.Flatten(data_format=data_format, **kwargs) 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:4,代碼來源:baisc.py

示例2: test_mnist_unet_with_shape_valid

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 別名]
def test_mnist_unet_with_shape_valid(self):
        num_subsamples = 100
        (x_train, y_train), (x_test, y_test) = TestUtil.get_mnist(flattened=False, num_subsamples=num_subsamples)

        explained_model_builder = MLPModelBuilder(num_layers=2, num_units=64, activation="relu", p_dropout=0.2,
                                                  verbose=0, batch_size=256, learning_rate=0.001, num_epochs=2,
                                                  early_stopping_patience=128)
        input_shape = x_train.shape[1:]
        input_layer = Input(shape=input_shape)
        last_layer = Flatten()(input_layer)
        last_layer = explained_model_builder.build(last_layer)
        last_layer = Dense(y_train.shape[-1], activation="softmax")(last_layer)
        explained_model = Model(input_layer, last_layer)
        explained_model.compile(loss="categorical_crossentropy",
                                optimizer="adam")
        explained_model.fit(x_train, y_train)
        masking_operation = ZeroMasking()
        loss = categorical_crossentropy

        downsample_factors = [(2, 2), (4, 4), (4, 7), (7, 4), (7, 7)]
        with_bns = [True if i % 2 == 0 else False for i in range(len(downsample_factors))]
        for downsample_factor, with_bn in zip(downsample_factors, with_bns):
            model_builder = UNetModelBuilder(downsample_factor, num_layers=2, num_units=64, activation="relu",
                                             p_dropout=0.2, verbose=0, batch_size=256, learning_rate=0.001,
                                             num_epochs=2, early_stopping_patience=128, with_bn=with_bn)

            explainer = CXPlain(explained_model, model_builder, masking_operation, loss,
                                downsample_factors=downsample_factor)

            explainer.fit(x_train, y_train)
            eval_score = explainer.score(x_test, y_test)
            train_score = explainer.get_last_fit_score()
            median = explainer.predict(x_test)
            self.assertTrue(median.shape == x_test.shape) 
開發者ID:d909b,項目名稱:cxplain,代碼行數:36,代碼來源:test_explanation_model.py

示例3: architecture

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 別名]
def architecture(inputs):
    """ Architecture of model """

    conv1 = Conv2D(32, kernel_size=(3, 3),
                   activation='relu')(inputs)
    max1 = MaxPooling2D(pool_size=(2, 2))(conv1)
    conv2 = Conv2D(32, (3, 3), activation='relu')(max1)
    max2 = MaxPooling2D(pool_size=(2, 2))(conv2)
    conv3 = Conv2D(64, (3, 3), activation='relu')(max2)
    max3 = MaxPooling2D(pool_size=(2, 2))(conv3)
    flat1 = Flatten()(max3)
    dense1 = Dense(64, activation='relu')(flat1)
    drop1 = Dropout(0.5)(dense1)

    return drop1 
開發者ID:marco-willi,項目名稱:camera-trap-classifier,代碼行數:17,代碼來源:small_cnn.py

示例4: combined_dnn_input

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 別名]
def combined_dnn_input(sparse_embedding_list, dense_value_list):
    if len(sparse_embedding_list) > 0 and len(dense_value_list) > 0:
        sparse_dnn_input = Flatten()(concat_func(sparse_embedding_list))
        dense_dnn_input = Flatten()(concat_func(dense_value_list))
        return concat_func([sparse_dnn_input, dense_dnn_input])
    elif len(sparse_embedding_list) > 0:
        return Flatten()(concat_func(sparse_embedding_list))
    elif len(dense_value_list) > 0:
        return Flatten()(concat_func(dense_value_list))
    else:
        raise NotImplementedError("dnn_feature_columns can not be empty list") 
開發者ID:shenweichen,項目名稱:DeepCTR,代碼行數:13,代碼來源:utils.py

示例5: __init__

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 別名]
def __init__(self, game, encoder):
        """
        NNet model, copied from Othello NNet, with reduced fully connected layers fc1 and fc2 and reduced nnet_args.num_channels
        :param game: game configuration
        :param encoder: Encoder, used to encode game boards
        """
        from rts.src.config_class import CONFIG

        # game params
        self.board_x, self.board_y, num_encoders = game.getBoardSize()
        self.action_size = game.getActionSize()

        """
        num_encoders = CONFIG.nnet_args.encoder.num_encoders
        """
        num_encoders = encoder.num_encoders

        # Neural Net
        self.input_boards = Input(shape=(self.board_x, self.board_y, num_encoders))  # s: batch_size x board_x x board_y x num_encoders

        x_image = Reshape((self.board_x, self.board_y, num_encoders))(self.input_boards)  # batch_size  x board_x x board_y x num_encoders
        h_conv1 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='same', use_bias=False)(x_image)))  # batch_size  x board_x x board_y x num_channels
        h_conv2 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='same', use_bias=False)(h_conv1)))  # batch_size  x board_x x board_y x num_channels
        h_conv3 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='valid', use_bias=False)(h_conv2)))  # batch_size  x (board_x-2) x (board_y-2) x num_channels
        h_conv4 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='valid', use_bias=False)(h_conv3)))  # batch_size  x (board_x-4) x (board_y-4) x num_channels
        h_conv4_flat = Flatten()(h_conv4)
        s_fc1 = Dropout(CONFIG.nnet_args.dropout)(Activation('relu')(BatchNormalization(axis=1)(Dense(256, use_bias=False)(h_conv4_flat))))  # batch_size x 1024
        s_fc2 = Dropout(CONFIG.nnet_args.dropout)(Activation('relu')(BatchNormalization(axis=1)(Dense(128, use_bias=False)(s_fc1))))  # batch_size x 1024
        self.pi = Dense(self.action_size, activation='softmax', name='pi')(s_fc2)  # batch_size x self.action_size
        self.v = Dense(1, activation='tanh', name='v')(s_fc2)  # batch_size x 1

        self.model = Model(inputs=self.input_boards, outputs=[self.pi, self.v])
        self.model.compile(loss=['categorical_crossentropy', 'mean_squared_error'], optimizer=Adam(CONFIG.nnet_args.lr)) 
開發者ID:suragnair,項目名稱:alpha-zero-general,代碼行數:35,代碼來源:RTSNNet.py

示例6: build_model

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 別名]
def build_model():
    base_model = VGG16(weights='imagenet')
    top_model = Sequential()
    top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
    return Model(inputs=base_model.input, outputs=top_model(base_model.output)) 
開發者ID:prabodhhere,項目名稱:tsne-grid,代碼行數:7,代碼來源:tsne_grid.py

示例7: build

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 別名]
def build(self, lambda_u=0.0001, lambda_v=0.0001, optimizer='rmsprop',
              loss='mse', metrics='mse', initializer='uniform'):
        """
        Init session and create model architecture.
        :param lambda_u: lambda value of l2 norm for user embeddings.
        :param lambda_v: lambda value of l2 norm for item embeddings.
        :param optimizer: optimizer type.
        :param loss: loss type.
        :param metrics: evaluation metrics.
        :param initializer: initializer of embedding
        :return:
        """
        # init session on first time ref
        sess = self.session
        # user embedding
        user_input_layer = Input(shape=(1,), dtype='int32', name='user_input')
        user_embedding_layer = Embedding(
            input_dim=self.user_num,
            output_dim=self.embedding_dim,
            input_length=1,
            name='user_embedding',
            embeddings_regularizer=l2(lambda_u),
            embeddings_initializer=initializer)(user_input_layer)
        user_embedding_layer = Flatten(name='user_flatten')(user_embedding_layer)

        # item embedding
        item_input_layer = Input(shape=(1,), dtype='int32', name='item_input')
        item_embedding_layer = Embedding(
            input_dim=self.item_num,
            output_dim=self.embedding_dim,
            input_length=1,
            name='item_embedding',
            embeddings_regularizer=l2(lambda_v),
            embeddings_initializer=initializer)(item_input_layer)
        item_embedding_layer = Flatten(name='item_flatten')(item_embedding_layer)

        # rating prediction
        dot_layer = Dot(axes=-1,
                        name='dot_layer')([user_embedding_layer,
                                           item_embedding_layer])
        self._model = Model(
            inputs=[user_input_layer, item_input_layer], outputs=[dot_layer])

        # compile model
        optimizer_instance = getattr(
            tf.keras.optimizers, optimizer.optimizer)(**optimizer.kwargs)
        losses = getattr(tf.keras.losses, loss)
        self._model.compile(optimizer=optimizer_instance,
                            loss=losses, metrics=metrics)
        # pick user_embedding for aggregating
        self._trainable_weights = {v.name.split(
            "/")[0]: v for v in self._model.trainable_weights}
        self._aggregate_weights = {
            "user_embedding": self._trainable_weights["user_embedding"]} 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:56,代碼來源:backend.py

示例8: _build

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 別名]
def _build(self, lamda_u=0.0001, lamda_v=0.0001, optimizer='rmsprop',
               loss='mse', metrics='mse', initializer='uniform'):
        # init session on first time ref
        sess = self.session

        # user embedding
        user_InputLayer = Input(shape=(1,), dtype='int32', name='user_input')
        user_EmbeddingLayer = Embedding(input_dim=self.user_num,
                                        output_dim=self.embedding_dim,
                                        input_length=1,
                                        name='user_embedding',
                                        embeddings_regularizer=l2(lamda_u),
                                        embeddings_initializer=initializer)(user_InputLayer)
        user_EmbeddingLayer = Flatten(name='user_flatten')(user_EmbeddingLayer)

        # user bias
        user_BiasLayer = Embedding(input_dim=self.user_num, output_dim=1, input_length=1,
                                   name='user_bias', embeddings_regularizer=l2(lamda_u),
                                   embeddings_initializer=Zeros())(user_InputLayer)
        user_BiasLayer = Flatten(name='user_bias_flatten')(user_BiasLayer)

        # item embedding
        item_InputLayer = Input(shape=(1,), dtype='int32', name='item_input')
        item_EmbeddingLayer = Embedding(input_dim=self.item_num,
                                        output_dim=self.embedding_dim,
                                        input_length=1,
                                        name='item_embedding',
                                        embeddings_regularizer=l2(lamda_v),
                                        embeddings_initializer=initializer)(item_InputLayer)
        item_EmbeddingLayer = Flatten(name='item_flatten')(item_EmbeddingLayer)

        # item bias
        item_BiasLayer = Embedding(input_dim=self.item_num, output_dim=1, input_length=1,
                                   name='item_bias', embeddings_regularizer=l2(lamda_v),
                                   embeddings_initializer=Zeros())(item_InputLayer)
        item_BiasLayer = Flatten(name='item_bias_flatten')(item_BiasLayer)

        # rating prediction
        dotLayer = Dot(axes=-1, name='dot_layer')([user_EmbeddingLayer, item_EmbeddingLayer])

        # add mu, user bias and item bias
        dotLayer = ConstantLayer(mu=self.mu)(dotLayer)
        dotLayer = Add()([dotLayer, user_BiasLayer])
        dotLayer = Add()([dotLayer, item_BiasLayer])

        # create model
        self._model = Model(inputs=[user_InputLayer, item_InputLayer], outputs=[dotLayer])

        # compile model
        optimizer_instance = getattr(tf.keras.optimizers, optimizer.optimizer)(**optimizer.kwargs)
        losses = getattr(tf.keras.losses, loss)
        self._model.compile(optimizer=optimizer_instance,
                            loss=losses, metrics=metrics)
        # pick user_embedding and user_bias for aggregating
        self._trainable_weights = {v.name.split("/")[0]: v for v in self._model.trainable_weights}
        LOGGER.debug(f"trainable weights {self._trainable_weights}")
        self._aggregate_weights = {"user_embedding": self._trainable_weights["user_embedding"],
                                   "user_bias": self._trainable_weights["user_bias"]} 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:60,代碼來源:backend.py

示例9: _build_model

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 別名]
def _build_model(self, input_shape):
        x = Input(shape=(32, 32, 3))
        y = x
        y = Convolution2D(
            filters=64,
            kernel_size=3,
            strides=1,
            padding="same",
            activation="relu",
            kernel_initializer="he_normal")(y)
        y = Convolution2D(
            filters=64,
            kernel_size=3,
            strides=1,
            padding="same",
            activation="relu",
            kernel_initializer="he_normal")(y)
        y = MaxPooling2D(pool_size=2, strides=2, padding="same")(y)

        y = Convolution2D(
            filters=128,
            kernel_size=3,
            strides=1,
            padding="same",
            activation="relu",
            kernel_initializer="he_normal")(y)
        y = Convolution2D(
            filters=128,
            kernel_size=3,
            strides=1,
            padding="same",
            activation="relu",
            kernel_initializer="he_normal")(y)
        y = MaxPooling2D(pool_size=2, strides=2, padding="same")(y)

        y = Convolution2D(
            filters=256,
            kernel_size=3,
            strides=1,
            padding="same",
            activation="relu",
            kernel_initializer="he_normal")(y)
        y = Convolution2D(
            filters=256,
            kernel_size=3,
            strides=1,
            padding="same",
            activation="relu",
            kernel_initializer="he_normal")(y)
        y = MaxPooling2D(pool_size=2, strides=2, padding="same")(y)

        y = Flatten()(y)
        y = Dropout(self.config.get("dropout", 0.5))(y)
        y = Dense(
            units=10, activation="softmax", kernel_initializer="he_normal")(y)

        model = Model(inputs=x, outputs=y, name="model1")
        return model 
開發者ID:ray-project,項目名稱:ray,代碼行數:60,代碼來源:pbt_tune_cifar10_with_keras.py

示例10: _3d_cnn_model

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 別名]
def _3d_cnn_model(input_shape, num_classes):
    # Define Model
    inputs = Input(shape=input_shape, name="input-layer")

    # Conv 1
    X = Conv3D(filters=16, kernel_size=(3, 1, 5), strides=(1, 1, 1), name="conv1-1")(inputs)
    X = PReLU(name="activation1-1")(X)
    X = Conv3D(filters=16, kernel_size=(3, 9, 1), strides=(1, 2, 1), name="conv1-2")(X)
    X = PReLU(name="activation1-2")(X)
    X = MaxPool3D(pool_size=(1, 1, 2), strides=(1, 1, 2), padding="valid", name="pool-1")(X)
    # X = Dropout(0.2)(X)

    # Conv 2
    X = Conv3D(filters=32, kernel_size=(3, 1, 4), strides=(1, 1, 1), name="conv2-1")(X)
    X = PReLU(name="activation2-1")(X)
    X = Conv3D(filters=32, kernel_size=(3, 8, 1), strides=(1, 2, 1), name="conv2-2")(X)
    X = PReLU(name="activation2-2")(X)
    X = MaxPool3D(pool_size=(1, 1, 2), strides=(1, 1, 2), padding="valid", name="pool-2")(X)
    # X = Dropout(0.2)(X)

    # Conv 3
    X = Conv3D(filters=64, kernel_size=(3, 1, 3), strides=(1, 1, 1), name="conv3-1")(X)
    X = PReLU(name="activation3-1")(X)
    X = Conv3D(filters=64, kernel_size=(3, 7, 1), strides=(1, 1, 1), name="conv3-2")(X)
    X = PReLU(name="activation3-2")(X)
    # X = Dropout(0.2)(X)

    # Conv 4
    X = Conv3D(filters=128, kernel_size=(3, 1, 3), strides=(1, 1, 1), name="conv4-1")(X)
    X = PReLU(name="activation4-1")(X)
    X = Conv3D(filters=128, kernel_size=(3, 7, 1), strides=(1, 1, 1), name="conv4-2")(X)
    X = PReLU(name="activation4-2")(X)
    # X = Dropout(0.2)(X)

    # Flaten
    X = Flatten()(X)

    # FC
    X = Dense(units=128, name="fc", activation='relu')(X)

    # Final Activation
    X = Dense(units=num_classes, activation='softmax', name="ac_softmax")(X)
    model = Model(inputs=inputs, outputs=X)

    return model 
開發者ID:imranparuk,項目名稱:speaker-recognition-3d-cnn,代碼行數:47,代碼來源:model.py

示例11: model

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 別名]
def model(train_x, train_y, test_x, test_y, epoch):
    '''

    :param train_x: train features
    :param train_y: train labels
    :param test_x:  test features
    :param test_y: test labels
    :param epoch: no. of epochs
    :return:
    '''
    conv_model = Sequential()
    # first layer with input shape (img_rows, img_cols, 1) and 12 filters
    conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu',
                          input_shape=(img_rows, img_cols, 1)))
    # second layer with 12 filters
    conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu'))
    # third layer with 12 filers
    conv_model.add(Conv2D(12, kernel_size=(3, 3), activation='relu'))
    # flatten layer
    conv_model.add(Flatten())
    # adding a Dense layer
    conv_model.add(Dense(100, activation='relu'))
    # adding the final Dense layer with softmax
    conv_model.add(Dense(num_classes, activation='softmax'))

    # compile the model
    conv_model.compile(optimizer=keras.optimizers.Adadelta(),
                       loss='categorical_crossentropy',
                       metrics=['accuracy'])
    print("\n Training the Convolution Neural Network on MNIST data\n")
    # fit the model
    conv_model.fit(train_x, train_y, batch_size=128, epochs=epoch,
                   validation_split=0.1, verbose=2)
    predicted_train_y = conv_model.predict(train_x)
    train_accuracy = (sum(np.argmax(predicted_train_y, axis=1)
                          == np.argmax(train_y, axis=1))/(float(len(train_y))))
    print('Train accuracy : ', train_accuracy)
    predicted_test_y = conv_model.predict(test_x)
    test_accuracy = (sum(np.argmax(predicted_test_y, axis=1)
                         == np.argmax(test_y, axis=1))/(float(len(test_y))))
    print('Test accuracy : ', test_accuracy)
    CNN_accuracy = {'train_accuracy': train_accuracy,
                    'test_accuracy': test_accuracy, 'epoch': epoch}
    return conv_model, CNN_accuracy 
開發者ID:aliakbar09a,項目名稱:mnist_digits_classification,代碼行數:46,代碼來源:conv_network.py

示例12: FiBiNET

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Flatten [as 別名]
def FiBiNET(linear_feature_columns, dnn_feature_columns, bilinear_type='interaction', reduction_ratio=3,
            dnn_hidden_units=(128, 128), l2_reg_linear=1e-5,
            l2_reg_embedding=1e-5, l2_reg_dnn=0, seed=1024, dnn_dropout=0, dnn_activation='relu',
            task='binary'):
    """Instantiates the Feature Importance and Bilinear feature Interaction NETwork architecture.

    :param linear_feature_columns: An iterable containing all the features used by linear part of the model.
    :param dnn_feature_columns: An iterable containing all the features used by deep part of the model.
    :param bilinear_type: str,bilinear function type used in Bilinear Interaction Layer,can be ``'all'`` , ``'each'`` or ``'interaction'``
    :param reduction_ratio: integer in [1,inf), reduction ratio used in SENET Layer
    :param dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of DNN
    :param l2_reg_linear: float. L2 regularizer strength applied to wide part
    :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
    :param l2_reg_dnn: float. L2 regularizer strength applied to DNN
    :param seed: integer ,to use as random seed.
    :param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate.
    :param dnn_activation: Activation function to use in DNN
    :param task: str, ``"binary"`` for  binary logloss or  ``"regression"`` for regression loss
    :return: A Keras model instance.
    """

    features = build_input_features(linear_feature_columns + dnn_feature_columns)

    inputs_list = list(features.values())

    linear_logit = get_linear_logit(features, linear_feature_columns, seed=seed, prefix='linear',
                                    l2_reg=l2_reg_linear)

    sparse_embedding_list, dense_value_list = input_from_feature_columns(features, dnn_feature_columns,
                                                                         l2_reg_embedding, seed)

    senet_embedding_list = SENETLayer(
        reduction_ratio, seed)(sparse_embedding_list)

    senet_bilinear_out = BilinearInteraction(
        bilinear_type=bilinear_type, seed=seed)(senet_embedding_list)
    bilinear_out = BilinearInteraction(
        bilinear_type=bilinear_type, seed=seed)(sparse_embedding_list)

    dnn_input = combined_dnn_input(
        [Flatten()(concat_func([senet_bilinear_out, bilinear_out]))], dense_value_list)
    dnn_out = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout,
                  False, seed)(dnn_input)
    dnn_logit = Dense(
        1, use_bias=False, activation=None)(dnn_out)

    final_logit = add_func([linear_logit, dnn_logit])
    output = PredictionLayer(task)(final_logit)

    model = Model(inputs=inputs_list, outputs=output)
    return model 
開發者ID:shenweichen,項目名稱:DeepCTR,代碼行數:53,代碼來源:fibinet.py


注:本文中的tensorflow.python.keras.layers.Flatten方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。