本文整理匯總了Python中tensorflow.python.keras.layers.Embedding方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Embedding方法的具體用法?Python layers.Embedding怎麽用?Python layers.Embedding使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.keras.layers
的用法示例。
在下文中一共展示了layers.Embedding方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Embedding [as 別名]
def build(self, input_layer):
last_layer = input_layer
input_shape = K.int_shape(input_layer)
if self.with_embedding:
if input_shape[-1] != 1:
raise ValueError("Only one feature (the index) can be used with embeddings, "
"i.e. the input shape should be (num_samples, length, 1). "
"The actual shape was: " + str(input_shape))
last_layer = Lambda(lambda x: K.squeeze(x, axis=-1),
output_shape=K.int_shape(last_layer)[:-1])(last_layer) # Remove feature dimension.
last_layer = Embedding(self.embedding_size, self.embedding_dimension,
input_length=input_shape[-2])(last_layer)
for _ in range(self.num_layers):
last_layer = Dense(self.num_units, activation=self.activation)(last_layer)
if self.with_bn:
last_layer = BatchNormalization()(last_layer)
if not np.isclose(self.p_dropout, 0):
last_layer = Dropout(self.p_dropout)(last_layer)
return last_layer
示例2: GCN
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Embedding [as 別名]
def GCN(adj_dim,feature_dim,n_hidden, num_class, num_layers=2,activation=tf.nn.relu,dropout_rate=0.5, l2_reg=0, feature_less=True, ):
Adj = Input(shape=(None,), sparse=True)
if feature_less:
X_in = Input(shape=(1,), )
emb = Embedding(adj_dim, feature_dim,
embeddings_initializer=Identity(1.0), trainable=False)
X_emb = emb(X_in)
h = Reshape([X_emb.shape[-1]])(X_emb)
else:
X_in = Input(shape=(feature_dim,), )
h = X_in
for i in range(num_layers):
if i == num_layers - 1:
activation = tf.nn.softmax
n_hidden = num_class
h = GraphConvolution(n_hidden, activation=activation, dropout_rate=dropout_rate, l2_reg=l2_reg)([h,Adj])
output = h
model = Model(inputs=[X_in,Adj], outputs=output)
return model
示例3: create_embedding_dict
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Embedding [as 別名]
def create_embedding_dict(sparse_feature_columns, varlen_sparse_feature_columns, seed, l2_reg,
prefix='sparse_', seq_mask_zero=True):
sparse_embedding = {}
for feat in sparse_feature_columns:
emb = Embedding(feat.vocabulary_size, feat.embedding_dim,
embeddings_initializer=feat.embeddings_initializer,
embeddings_regularizer=l2(l2_reg),
name=prefix + '_emb_' + feat.embedding_name)
emb.trainable = feat.trainable
sparse_embedding[feat.embedding_name] = emb
if varlen_sparse_feature_columns and len(varlen_sparse_feature_columns) > 0:
for feat in varlen_sparse_feature_columns:
# if feat.name not in sparse_embedding:
emb = Embedding(feat.vocabulary_size, feat.embedding_dim,
embeddings_initializer=feat.embeddings_initializer,
embeddings_regularizer=l2(
l2_reg),
name=prefix + '_seq_emb_' + feat.name,
mask_zero=seq_mask_zero)
emb.trainable = feat.trainable
sparse_embedding[feat.embedding_name] = emb
return sparse_embedding
示例4: get_embedding
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Embedding [as 別名]
def get_embedding(region_num, region_feature_dim_dict, base_feature_dim_dict, bias_feature_dim_dict, init_std, seed, l2_reg_linear):
region_embeddings = [[Embedding(feat.dimension, 1, embeddings_initializer=TruncatedNormal(stddev=init_std, seed=seed+j), embeddings_regularizer=l2(l2_reg_linear),
name='region_emb_' + str(j)+'_' + str(i)) for
i, feat in enumerate(region_feature_dim_dict['sparse'])] for j in range(region_num)]
base_embeddings = [[Embedding(feat.dimension, 1,
embeddings_initializer=TruncatedNormal(stddev=init_std, seed=seed + j), embeddings_regularizer=l2(l2_reg_linear),
name='base_emb_' + str(j) + '_' + str(i)) for
i, feat in enumerate(base_feature_dim_dict['sparse'])] for j in range(region_num)]
bias_embedding = [Embedding(feat.dimension, 1, embeddings_initializer=TruncatedNormal(stddev=init_std, seed=seed), embeddings_regularizer=l2(l2_reg_linear),
name='embed_bias' + '_' + str(i)) for
i, feat in enumerate(bias_feature_dim_dict['sparse'])]
return region_embeddings, base_embeddings, bias_embedding
示例5: create_model
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Embedding [as 別名]
def create_model(numNodes, embedding_size, order='second'):
v_i = Input(shape=(1,))
v_j = Input(shape=(1,))
first_emb = Embedding(numNodes, embedding_size, name='first_emb')
second_emb = Embedding(numNodes, embedding_size, name='second_emb')
context_emb = Embedding(numNodes, embedding_size, name='context_emb')
v_i_emb = first_emb(v_i)
v_j_emb = first_emb(v_j)
v_i_emb_second = second_emb(v_i)
v_j_context_emb = context_emb(v_j)
first = Lambda(lambda x: tf.reduce_sum(
x[0]*x[1], axis=-1, keep_dims=False), name='first_order')([v_i_emb, v_j_emb])
second = Lambda(lambda x: tf.reduce_sum(
x[0]*x[1], axis=-1, keep_dims=False), name='second_order')([v_i_emb_second, v_j_context_emb])
if order == 'first':
output_list = [first]
elif order == 'second':
output_list = [second]
else:
output_list = [first, second]
model = Model(inputs=[v_i, v_j], outputs=output_list)
return model, {'first': first_emb, 'second': second_emb}
示例6: build
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Embedding [as 別名]
def build(self, lambda_u=0.0001, lambda_v=0.0001, optimizer='rmsprop',
loss='mse', metrics='mse', initializer='uniform'):
"""
Init session and create model architecture.
:param lambda_u: lambda value of l2 norm for user embeddings.
:param lambda_v: lambda value of l2 norm for item embeddings.
:param optimizer: optimizer type.
:param loss: loss type.
:param metrics: evaluation metrics.
:param initializer: initializer of embedding
:return:
"""
# init session on first time ref
sess = self.session
# user embedding
user_input_layer = Input(shape=(1,), dtype='int32', name='user_input')
user_embedding_layer = Embedding(
input_dim=self.user_num,
output_dim=self.embedding_dim,
input_length=1,
name='user_embedding',
embeddings_regularizer=l2(lambda_u),
embeddings_initializer=initializer)(user_input_layer)
user_embedding_layer = Flatten(name='user_flatten')(user_embedding_layer)
# item embedding
item_input_layer = Input(shape=(1,), dtype='int32', name='item_input')
item_embedding_layer = Embedding(
input_dim=self.item_num,
output_dim=self.embedding_dim,
input_length=1,
name='item_embedding',
embeddings_regularizer=l2(lambda_v),
embeddings_initializer=initializer)(item_input_layer)
item_embedding_layer = Flatten(name='item_flatten')(item_embedding_layer)
# rating prediction
dot_layer = Dot(axes=-1,
name='dot_layer')([user_embedding_layer,
item_embedding_layer])
self._model = Model(
inputs=[user_input_layer, item_input_layer], outputs=[dot_layer])
# compile model
optimizer_instance = getattr(
tf.keras.optimizers, optimizer.optimizer)(**optimizer.kwargs)
losses = getattr(tf.keras.losses, loss)
self._model.compile(optimizer=optimizer_instance,
loss=losses, metrics=metrics)
# pick user_embedding for aggregating
self._trainable_weights = {v.name.split(
"/")[0]: v for v in self._model.trainable_weights}
self._aggregate_weights = {
"user_embedding": self._trainable_weights["user_embedding"]}
示例7: _build
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Embedding [as 別名]
def _build(self, lamda_u=0.0001, lamda_v=0.0001, optimizer='rmsprop',
loss='mse', metrics='mse', initializer='uniform'):
# init session on first time ref
sess = self.session
# user embedding
user_InputLayer = Input(shape=(1,), dtype='int32', name='user_input')
user_EmbeddingLayer = Embedding(input_dim=self.user_num,
output_dim=self.embedding_dim,
input_length=1,
name='user_embedding',
embeddings_regularizer=l2(lamda_u),
embeddings_initializer=initializer)(user_InputLayer)
user_EmbeddingLayer = Flatten(name='user_flatten')(user_EmbeddingLayer)
# user bias
user_BiasLayer = Embedding(input_dim=self.user_num, output_dim=1, input_length=1,
name='user_bias', embeddings_regularizer=l2(lamda_u),
embeddings_initializer=Zeros())(user_InputLayer)
user_BiasLayer = Flatten(name='user_bias_flatten')(user_BiasLayer)
# item embedding
item_InputLayer = Input(shape=(1,), dtype='int32', name='item_input')
item_EmbeddingLayer = Embedding(input_dim=self.item_num,
output_dim=self.embedding_dim,
input_length=1,
name='item_embedding',
embeddings_regularizer=l2(lamda_v),
embeddings_initializer=initializer)(item_InputLayer)
item_EmbeddingLayer = Flatten(name='item_flatten')(item_EmbeddingLayer)
# item bias
item_BiasLayer = Embedding(input_dim=self.item_num, output_dim=1, input_length=1,
name='item_bias', embeddings_regularizer=l2(lamda_v),
embeddings_initializer=Zeros())(item_InputLayer)
item_BiasLayer = Flatten(name='item_bias_flatten')(item_BiasLayer)
# rating prediction
dotLayer = Dot(axes=-1, name='dot_layer')([user_EmbeddingLayer, item_EmbeddingLayer])
# add mu, user bias and item bias
dotLayer = ConstantLayer(mu=self.mu)(dotLayer)
dotLayer = Add()([dotLayer, user_BiasLayer])
dotLayer = Add()([dotLayer, item_BiasLayer])
# create model
self._model = Model(inputs=[user_InputLayer, item_InputLayer], outputs=[dotLayer])
# compile model
optimizer_instance = getattr(tf.keras.optimizers, optimizer.optimizer)(**optimizer.kwargs)
losses = getattr(tf.keras.losses, loss)
self._model.compile(optimizer=optimizer_instance,
loss=losses, metrics=metrics)
# pick user_embedding and user_bias for aggregating
self._trainable_weights = {v.name.split("/")[0]: v for v in self._model.trainable_weights}
LOGGER.debug(f"trainable weights {self._trainable_weights}")
self._aggregate_weights = {"user_embedding": self._trainable_weights["user_embedding"],
"user_bias": self._trainable_weights["user_bias"]}