本文整理匯總了Python中tensorflow.python.keras.layers.Dropout方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Dropout方法的具體用法?Python layers.Dropout怎麽用?Python layers.Dropout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.keras.layers
的用法示例。
在下文中一共展示了layers.Dropout方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dropout [as 別名]
def build(self, input_layer):
last_layer = input_layer
input_shape = K.int_shape(input_layer)
if self.with_embedding:
if input_shape[-1] != 1:
raise ValueError("Only one feature (the index) can be used with embeddings, "
"i.e. the input shape should be (num_samples, length, 1). "
"The actual shape was: " + str(input_shape))
last_layer = Lambda(lambda x: K.squeeze(x, axis=-1),
output_shape=K.int_shape(last_layer)[:-1])(last_layer) # Remove feature dimension.
last_layer = Embedding(self.embedding_size, self.embedding_dimension,
input_length=input_shape[-2])(last_layer)
for _ in range(self.num_layers):
last_layer = Dense(self.num_units, activation=self.activation)(last_layer)
if self.with_bn:
last_layer = BatchNormalization()(last_layer)
if not np.isclose(self.p_dropout, 0):
last_layer = Dropout(self.p_dropout)(last_layer)
return last_layer
示例2: build
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dropout [as 別名]
def build(self, input_shapes):
if self.feature_less:
input_dim = int(input_shapes[0][-1])
else:
assert len(input_shapes) == 2
features_shape = input_shapes[0]
input_dim = int(features_shape[-1])
self.kernel = self.add_weight(shape=(input_dim,
self.units),
initializer=glorot_uniform(
seed=self.seed),
regularizer=l2(self.l2_reg),
name='kernel', )
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
initializer=Zeros(),
name='bias', )
self.dropout = Dropout(self.dropout_rate, seed=self.seed)
self.built = True
示例3: __conv_block
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dropout [as 別名]
def __conv_block(ip, nb_filter, bottleneck=False, dropout_rate=None, weight_decay=1e-4):
''' Apply BatchNorm, Relu, 3x3 Conv2D, optional bottleneck block and dropout
Args:
ip: Input keras tensor
nb_filter: number of filters
bottleneck: add bottleneck block
dropout_rate: dropout rate
weight_decay: weight decay factor
Returns: keras tensor with batch_norm, relu and convolution2d added (optional bottleneck)
'''
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
x = Activation('relu')(x)
if bottleneck:
inter_channel = nb_filter * 4 # Obtained from https://github.com/liuzhuang13/DenseNet/blob/master/densenet.lua
x = Conv2D(inter_channel, (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
kernel_regularizer=l2(weight_decay))(x)
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(x)
x = Activation('relu')(x)
x = Conv2D(nb_filter, (3, 3), kernel_initializer='he_normal', padding='same', use_bias=False)(x)
if dropout_rate:
x = Dropout(dropout_rate)(x)
return x
示例4: _build_dropout
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dropout [as 別名]
def _build_dropout(rate, noise_shape=None, seed=None, **kwargs):
return layers.Dropout(rate, noise_shape=noise_shape, seed=seed, **kwargs)
示例5: build
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dropout [as 別名]
def build(self, input_layer):
last_layer = input_layer
for _ in range(self.num_layers):
last_layer = Dense(self.num_units, activation=self.activation)(last_layer)
if self.with_bn:
last_layer = BatchNormalization()(last_layer)
if not np.isclose(self.p_dropout, 0):
last_layer = Dropout(self.p_dropout)(last_layer)
return last_layer
示例6: architecture
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dropout [as 別名]
def architecture(inputs):
""" Architecture of model """
conv1 = Conv2D(32, kernel_size=(3, 3),
activation='relu')(inputs)
max1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(32, (3, 3), activation='relu')(max1)
max2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(64, (3, 3), activation='relu')(max2)
max3 = MaxPooling2D(pool_size=(2, 2))(conv3)
flat1 = Flatten()(max3)
dense1 = Dense(64, activation='relu')(flat1)
drop1 = Dropout(0.5)(dense1)
return drop1
示例7: build
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dropout [as 別名]
def build(self, input_shapes):
self.neigh_weights = self.add_weight(shape=(self.input_dim, self.units),
initializer=glorot_uniform(
seed=self.seed),
regularizer=l2(self.l2_reg),
name="neigh_weights")
if self.use_bias:
self.bias = self.add_weight(shape=(self.units), initializer=Zeros(),
name='bias_weight')
self.dropout = Dropout(self.dropout_rate)
self.built = True
示例8: build
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dropout [as 別名]
def build(self, input_shape):
X, A = input_shape
embedding_size = int(X[-1])
self.weight = self.add_weight(name='weight', shape=[embedding_size, self.att_embedding_size * self.head_num],
dtype=tf.float32,
regularizer=l2(self.l2_reg),
initializer=tf.keras.initializers.glorot_uniform())
self.att_self_weight = self.add_weight(name='att_self_weight',
shape=[1, self.head_num,
self.att_embedding_size],
dtype=tf.float32,
regularizer=l2(self.l2_reg),
initializer=tf.keras.initializers.glorot_uniform())
self.att_neighs_weight = self.add_weight(name='att_neighs_weight',
shape=[1, self.head_num,
self.att_embedding_size],
dtype=tf.float32,
regularizer=l2(self.l2_reg),
initializer=tf.keras.initializers.glorot_uniform())
if self.use_bias:
self.bias_weight = self.add_weight(name='bias', shape=[1, self.head_num, self.att_embedding_size],
dtype=tf.float32,
initializer=Zeros())
self.in_dropout = Dropout(self.dropout_rate)
self.feat_dropout = Dropout(self.dropout_rate, )
self.att_dropout = Dropout(self.dropout_rate, )
# Be sure to call this somewhere!
super(GATLayer, self).build(input_shape)
示例9: __init__
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dropout [as 別名]
def __init__(self, game, encoder):
"""
NNet model, copied from Othello NNet, with reduced fully connected layers fc1 and fc2 and reduced nnet_args.num_channels
:param game: game configuration
:param encoder: Encoder, used to encode game boards
"""
from rts.src.config_class import CONFIG
# game params
self.board_x, self.board_y, num_encoders = game.getBoardSize()
self.action_size = game.getActionSize()
"""
num_encoders = CONFIG.nnet_args.encoder.num_encoders
"""
num_encoders = encoder.num_encoders
# Neural Net
self.input_boards = Input(shape=(self.board_x, self.board_y, num_encoders)) # s: batch_size x board_x x board_y x num_encoders
x_image = Reshape((self.board_x, self.board_y, num_encoders))(self.input_boards) # batch_size x board_x x board_y x num_encoders
h_conv1 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='same', use_bias=False)(x_image))) # batch_size x board_x x board_y x num_channels
h_conv2 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='same', use_bias=False)(h_conv1))) # batch_size x board_x x board_y x num_channels
h_conv3 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='valid', use_bias=False)(h_conv2))) # batch_size x (board_x-2) x (board_y-2) x num_channels
h_conv4 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='valid', use_bias=False)(h_conv3))) # batch_size x (board_x-4) x (board_y-4) x num_channels
h_conv4_flat = Flatten()(h_conv4)
s_fc1 = Dropout(CONFIG.nnet_args.dropout)(Activation('relu')(BatchNormalization(axis=1)(Dense(256, use_bias=False)(h_conv4_flat)))) # batch_size x 1024
s_fc2 = Dropout(CONFIG.nnet_args.dropout)(Activation('relu')(BatchNormalization(axis=1)(Dense(128, use_bias=False)(s_fc1)))) # batch_size x 1024
self.pi = Dense(self.action_size, activation='softmax', name='pi')(s_fc2) # batch_size x self.action_size
self.v = Dense(1, activation='tanh', name='v')(s_fc2) # batch_size x 1
self.model = Model(inputs=self.input_boards, outputs=[self.pi, self.v])
self.model.compile(loss=['categorical_crossentropy', 'mean_squared_error'], optimizer=Adam(CONFIG.nnet_args.lr))
示例10: _build_model
# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dropout [as 別名]
def _build_model(self, input_shape):
x = Input(shape=(32, 32, 3))
y = x
y = Convolution2D(
filters=64,
kernel_size=3,
strides=1,
padding="same",
activation="relu",
kernel_initializer="he_normal")(y)
y = Convolution2D(
filters=64,
kernel_size=3,
strides=1,
padding="same",
activation="relu",
kernel_initializer="he_normal")(y)
y = MaxPooling2D(pool_size=2, strides=2, padding="same")(y)
y = Convolution2D(
filters=128,
kernel_size=3,
strides=1,
padding="same",
activation="relu",
kernel_initializer="he_normal")(y)
y = Convolution2D(
filters=128,
kernel_size=3,
strides=1,
padding="same",
activation="relu",
kernel_initializer="he_normal")(y)
y = MaxPooling2D(pool_size=2, strides=2, padding="same")(y)
y = Convolution2D(
filters=256,
kernel_size=3,
strides=1,
padding="same",
activation="relu",
kernel_initializer="he_normal")(y)
y = Convolution2D(
filters=256,
kernel_size=3,
strides=1,
padding="same",
activation="relu",
kernel_initializer="he_normal")(y)
y = MaxPooling2D(pool_size=2, strides=2, padding="same")(y)
y = Flatten()(y)
y = Dropout(self.config.get("dropout", 0.5))(y)
y = Dense(
units=10, activation="softmax", kernel_initializer="he_normal")(y)
model = Model(inputs=x, outputs=y, name="model1")
return model