當前位置: 首頁>>代碼示例>>Python>>正文


Python layers.Dense方法代碼示例

本文整理匯總了Python中tensorflow.python.keras.layers.Dense方法的典型用法代碼示例。如果您正苦於以下問題:Python layers.Dense方法的具體用法?Python layers.Dense怎麽用?Python layers.Dense使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.keras.layers的用法示例。


在下文中一共展示了layers.Dense方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_model

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def create_model(node_size, hidden_size=[256, 128], l1=1e-5, l2=1e-4):
    A = Input(shape=(node_size,))
    L = Input(shape=(None,))
    fc = A
    for i in range(len(hidden_size)):
        if i == len(hidden_size) - 1:
            fc = Dense(hidden_size[i], activation='relu',
                       kernel_regularizer=l1_l2(l1, l2), name='1st')(fc)
        else:
            fc = Dense(hidden_size[i], activation='relu',
                       kernel_regularizer=l1_l2(l1, l2))(fc)
    Y = fc
    for i in reversed(range(len(hidden_size) - 1)):
        fc = Dense(hidden_size[i], activation='relu',
                   kernel_regularizer=l1_l2(l1, l2))(fc)

    A_ = Dense(node_size, 'relu', name='2nd')(fc)
    model = Model(inputs=[A, L], outputs=[A_, Y])
    emb = Model(inputs=A, outputs=Y)
    return model, emb 
開發者ID:shenweichen,項目名稱:GraphEmbedding,代碼行數:22,代碼來源:sdne.py

示例2: crnn_model

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def crnn_model(width=100, n_vars=6, n_classes=7, conv_kernel_size=5,
               conv_filters=3, lstm_units=3):
    input_shape = (width, n_vars)
    model = Sequential()
    model.add(Conv1D(filters=conv_filters, kernel_size=conv_kernel_size,
                     padding='valid', activation='relu', input_shape=input_shape))
    model.add(Conv1D(filters=conv_filters, kernel_size=conv_kernel_size,
                     padding='valid', activation='relu'))
    model.add(LSTM(units=lstm_units, dropout=0.1, recurrent_dropout=0.1))
    model.add(Dense(n_classes, activation="softmax"))

    model.compile(loss='categorical_crossentropy', optimizer='adam',
                  metrics=['accuracy'])

    return model


# load the data 
開發者ID:dmbee,項目名稱:seglearn,代碼行數:20,代碼來源:plot_segment_rep.py

示例3: crnn_model

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def crnn_model(width=100, n_vars=6, n_classes=7, conv_kernel_size=5,
               conv_filters=2, lstm_units=2):
    # create a crnn model with keras with one cnn layers, and one rnn layer
    input_shape = (width, n_vars)
    model = Sequential()
    model.add(Conv1D(filters=conv_filters, kernel_size=conv_kernel_size,
                     padding='valid', activation='relu', input_shape=input_shape))
    model.add(LSTM(units=lstm_units, dropout=0.1, recurrent_dropout=0.1))
    model.add(Dense(n_classes, activation="softmax"))

    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

    return model


# load the data 
開發者ID:dmbee,項目名稱:seglearn,代碼行數:18,代碼來源:plot_model_selection2.py

示例4: crnn_model

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def crnn_model(width=100, n_vars=6, n_classes=7, conv_kernel_size=5,
               conv_filters=3, lstm_units=3):
    input_shape = (width, n_vars)
    model = Sequential()
    model.add(Conv1D(filters=conv_filters, kernel_size=conv_kernel_size,
                     padding='valid', activation='relu', input_shape=input_shape))
    model.add(LSTM(units=lstm_units, dropout=0.1, recurrent_dropout=0.1))
    model.add(Dense(n_classes, activation="softmax"))

    model.compile(loss='categorical_crossentropy', optimizer='adam',
                  metrics=['accuracy'])

    return model


##############################################
# Setup
##############################################

# load the data 
開發者ID:dmbee,項目名稱:seglearn,代碼行數:22,代碼來源:plot_nn_training_curves.py

示例5: build

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def build(self, input_layer):
        last_layer = input_layer
        input_shape = K.int_shape(input_layer)

        if self.with_embedding:
            if input_shape[-1] != 1:
                raise ValueError("Only one feature (the index) can be used with embeddings, "
                                 "i.e. the input shape should be (num_samples, length, 1). "
                                 "The actual shape was: " + str(input_shape))

            last_layer = Lambda(lambda x: K.squeeze(x, axis=-1),
                                output_shape=K.int_shape(last_layer)[:-1])(last_layer)  # Remove feature dimension.
            last_layer = Embedding(self.embedding_size, self.embedding_dimension,
                                   input_length=input_shape[-2])(last_layer)

        for _ in range(self.num_layers):
            last_layer = Dense(self.num_units, activation=self.activation)(last_layer)
            if self.with_bn:
                last_layer = BatchNormalization()(last_layer)
            if not np.isclose(self.p_dropout, 0):
                last_layer = Dropout(self.p_dropout)(last_layer)
        return last_layer 
開發者ID:d909b,項目名稱:cxplain,代碼行數:24,代碼來源:rnn.py

示例6: build

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def build(self, input_shapes):

        self.dense_layers = [Dense(
            self.input_dim, activation='relu', use_bias=True, kernel_regularizer=l2(self.l2_reg))]

        self.neigh_weights = self.add_weight(
            shape=(self.input_dim * 2, self.output_dim),
            initializer=glorot_uniform(
                seed=self.seed),
            regularizer=l2(self.l2_reg),

            name="neigh_weights")

        if self.use_bias:
            self.bias = self.add_weight(shape=(self.output_dim,),
                                        initializer=Zeros(),
                                        name='bias_weight')

        self.built = True 
開發者ID:shenweichen,項目名稱:GraphNeuralNetwork,代碼行數:21,代碼來源:graphsage.py

示例7: _mock_logits_layer

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def _mock_logits_layer(kernel, bias):
  """Sets initialization values to dense `logits` layers used in context."""

  class _MockDenseLayer(keras_layers.Dense):

    def __init__(self, units, activation, name):
      kwargs = {}
      if name == 'logits':
        kwargs = {
            'kernel_initializer': tf.compat.v1.initializers.constant(kernel),
            'bias_initializer': tf.compat.v1.initializers.constant(bias)
        }

      super(_MockDenseLayer, self).__init__(
          units=units, name=name, activation=activation, **kwargs)

  return tf.compat.v1.test.mock.patch.object(keras_layers, 'Dense',
                                             _MockDenseLayer) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:20,代碼來源:rnn_test.py

示例8: _build_dense

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def _build_dense(units, activation, use_bias=True, kernel_initializer="glorot_uniform",
                 bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
                 kernel_constraint=None, bias_constraint=None, seed=None, **kwargs):
    return layers.Dense(units=units,
                        activation=activation,
                        use_bias=use_bias,
                        kernel_initializer=_get_initializer(kernel_initializer, seed),
                        bias_initializer=_get_initializer(bias_initializer, seed),
                        kernel_regularizer=kernel_regularizer,
                        bias_regularizer=bias_regularizer,
                        activity_regularizer=activity_regularizer,
                        kernel_constraint=kernel_constraint,
                        bias_constraint=bias_constraint,
                        **kwargs) 
開發者ID:FederatedAI,項目名稱:FATE,代碼行數:16,代碼來源:baisc.py

示例9: test_mnist_unet_with_shape_valid

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def test_mnist_unet_with_shape_valid(self):
        num_subsamples = 100
        (x_train, y_train), (x_test, y_test) = TestUtil.get_mnist(flattened=False, num_subsamples=num_subsamples)

        explained_model_builder = MLPModelBuilder(num_layers=2, num_units=64, activation="relu", p_dropout=0.2,
                                                  verbose=0, batch_size=256, learning_rate=0.001, num_epochs=2,
                                                  early_stopping_patience=128)
        input_shape = x_train.shape[1:]
        input_layer = Input(shape=input_shape)
        last_layer = Flatten()(input_layer)
        last_layer = explained_model_builder.build(last_layer)
        last_layer = Dense(y_train.shape[-1], activation="softmax")(last_layer)
        explained_model = Model(input_layer, last_layer)
        explained_model.compile(loss="categorical_crossentropy",
                                optimizer="adam")
        explained_model.fit(x_train, y_train)
        masking_operation = ZeroMasking()
        loss = categorical_crossentropy

        downsample_factors = [(2, 2), (4, 4), (4, 7), (7, 4), (7, 7)]
        with_bns = [True if i % 2 == 0 else False for i in range(len(downsample_factors))]
        for downsample_factor, with_bn in zip(downsample_factors, with_bns):
            model_builder = UNetModelBuilder(downsample_factor, num_layers=2, num_units=64, activation="relu",
                                             p_dropout=0.2, verbose=0, batch_size=256, learning_rate=0.001,
                                             num_epochs=2, early_stopping_patience=128, with_bn=with_bn)

            explainer = CXPlain(explained_model, model_builder, masking_operation, loss,
                                downsample_factors=downsample_factor)

            explainer.fit(x_train, y_train)
            eval_score = explainer.score(x_test, y_test)
            train_score = explainer.get_last_fit_score()
            median = explainer.predict(x_test)
            self.assertTrue(median.shape == x_test.shape) 
開發者ID:d909b,項目名稱:cxplain,代碼行數:36,代碼來源:test_explanation_model.py

示例10: build

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def build(self, input_layer):
        last_layer = input_layer
        for _ in range(self.num_layers):
            last_layer = Dense(self.num_units, activation=self.activation)(last_layer)
            if self.with_bn:
                last_layer = BatchNormalization()(last_layer)
            if not np.isclose(self.p_dropout, 0):
                last_layer = Dropout(self.p_dropout)(last_layer)
        return last_layer 
開發者ID:d909b,項目名稱:cxplain,代碼行數:11,代碼來源:mlp.py

示例11: trivial_model

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def trivial_model(num_classes):
  """Trivial model for ImageNet dataset."""

  input_shape = (224, 224, 3)
  img_input = layers.Input(shape=input_shape)

  x = layers.Lambda(lambda x: backend.reshape(x, [-1, 224 * 224 * 3]),
                    name='reshape')(img_input)
  x = layers.Dense(1, name='fc1')(x)
  x = layers.Dense(num_classes, name='fc1000')(x)
  x = layers.Activation('softmax', dtype='float32')(x)

  return models.Model(img_input, x, name='trivial') 
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:15,代碼來源:trivial_model.py

示例12: create_tf_keras_model

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def create_tf_keras_model():
    model = tf.keras.Sequential()

    model.add(layers.Dense(64, activation='relu', input_shape=(32,)))
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(10, activation='softmax'))

    model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.002,
                                                     epsilon=1e-08,
                                                     name='Eve'),
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    return model 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:15,代碼來源:test_tensorflow_autolog.py

示例13: create_tf_keras_model

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def create_tf_keras_model():
    model = tf.keras.Sequential()

    model.add(layers.Dense(64, activation='relu', input_shape=(32,)))
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(10, activation='softmax'))

    model.compile(optimizer=tf.keras.optimizers.Adam(),
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    return model 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:13,代碼來源:test_tensorflow2_autolog.py

示例14: architecture

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def architecture(inputs):
    """ Architecture of model """

    conv1 = Conv2D(32, kernel_size=(3, 3),
                   activation='relu')(inputs)
    max1 = MaxPooling2D(pool_size=(2, 2))(conv1)
    conv2 = Conv2D(32, (3, 3), activation='relu')(max1)
    max2 = MaxPooling2D(pool_size=(2, 2))(conv2)
    conv3 = Conv2D(64, (3, 3), activation='relu')(max2)
    max3 = MaxPooling2D(pool_size=(2, 2))(conv3)
    flat1 = Flatten()(max3)
    dense1 = Dense(64, activation='relu')(flat1)
    drop1 = Dropout(0.5)(dense1)

    return drop1 
開發者ID:marco-willi,項目名稱:camera-trap-classifier,代碼行數:17,代碼來源:small_cnn.py

示例15: WDL

# 需要導入模塊: from tensorflow.python.keras import layers [as 別名]
# 或者: from tensorflow.python.keras.layers import Dense [as 別名]
def WDL(linear_feature_columns, dnn_feature_columns, dnn_hidden_units=(128, 128), l2_reg_linear=1e-5,
        l2_reg_embedding=1e-5, l2_reg_dnn=0, seed=1024, dnn_dropout=0, dnn_activation='relu',
        task='binary'):
    """Instantiates the Wide&Deep Learning architecture.

    :param linear_feature_columns: An iterable containing all the features used by linear part of the model.
    :param dnn_feature_columns: An iterable containing all the features used by deep part of the model.
    :param dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of DNN
    :param l2_reg_linear: float. L2 regularizer strength applied to wide part
    :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
    :param l2_reg_dnn: float. L2 regularizer strength applied to DNN
    :param seed: integer ,to use as random seed.
    :param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate.
    :param dnn_activation: Activation function to use in DNN
    :param task: str, ``"binary"`` for  binary logloss or  ``"regression"`` for regression loss
    :return: A Keras model instance.
    """

    features = build_input_features(
        linear_feature_columns + dnn_feature_columns)

    inputs_list = list(features.values())

    linear_logit = get_linear_logit(features, linear_feature_columns, seed=seed, prefix='linear',
                                    l2_reg=l2_reg_linear)

    sparse_embedding_list, dense_value_list = input_from_feature_columns(features, dnn_feature_columns,
                                                                         l2_reg_embedding, seed)

    dnn_input = combined_dnn_input(sparse_embedding_list, dense_value_list)
    dnn_out = DNN(dnn_hidden_units, dnn_activation, l2_reg_dnn, dnn_dropout,
                  False, seed)(dnn_input)
    dnn_logit = Dense(
        1, use_bias=False, activation=None)(dnn_out)

    final_logit = add_func([dnn_logit, linear_logit])

    output = PredictionLayer(task)(final_logit)

    model = Model(inputs=inputs_list, outputs=output)
    return model 
開發者ID:shenweichen,項目名稱:DeepCTR,代碼行數:43,代碼來源:wdl.py


注:本文中的tensorflow.python.keras.layers.Dense方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。