本文整理匯總了Python中tensorflow.python.keras.initializers.get方法的典型用法代碼示例。如果您正苦於以下問題:Python initializers.get方法的具體用法?Python initializers.get怎麽用?Python initializers.get使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.keras.initializers
的用法示例。
在下文中一共展示了initializers.get方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.python.keras import initializers [as 別名]
# 或者: from tensorflow.python.keras.initializers import get [as 別名]
def __init__(self,
input_dim,
output_dim,
dropout_rate=0.0,
activation='tanh',
kernel_initializer='glorot_uniform',
bias_initializer='zeros'):
super(HighwayLayer, self).__init__()
self.activation = activations.get(activation)
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.dropout_rate = dropout_rate
self.shape = (input_dim, output_dim)
self.input_dim = input_dim
self.output_dim = output_dim
self.kernel = None
self.bias = None
示例2: __init__
# 需要導入模塊: from tensorflow.python.keras import initializers [as 別名]
# 或者: from tensorflow.python.keras.initializers import get [as 別名]
def __init__(self,units,
activation=None,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
kernel_constraint=None,
use_bias=False,
bias_initializer="zeros",
trainable=True,
name=None):
super(Dense3D,self).__init__(trainable=trainable,name=name)
self.units = units
self.activation = activations.get(activation)
self.kernel_initializer = initializers.get(kernel_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.use_bias=use_bias
self.bias_initializer = bias_initializer
示例3: __init__
# 需要導入模塊: from tensorflow.python.keras import initializers [as 別名]
# 或者: from tensorflow.python.keras.initializers import get [as 別名]
def __init__(
self,
units,
activation=None,
use_bias=True,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs,
):
super(Dense, self).__init__(**kwargs)
self.units = int(units)
self.activation_identifier = activation
self.activation = activations.get(self.activation_identifier)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
# Not implemented arguments
default_args_check(kernel_regularizer, "kernel_regularizer", "Dense")
default_args_check(bias_regularizer, "bias_regularizer", "Dense")
default_args_check(activity_regularizer, "activity_regularizer", "Dense")
default_args_check(kernel_constraint, "kernel_constraint", "Dense")
default_args_check(bias_constraint, "bias_constraint", "Dense")
示例4: __init__
# 需要導入模塊: from tensorflow.python.keras import initializers [as 別名]
# 或者: from tensorflow.python.keras.initializers import get [as 別名]
def __init__(self, alpha_fwd=0.999, alpha_bkw=0.99,
axis=1, epsilon=1e-5,
stream_mu_initializer='zeros', stream_var_initializer='ones',
u_ctrl_initializer='zeros', v_ctrl_initializer='zeros',
trainable=True, name=None, **kwargs):
super(Norm, self).__init__(trainable=trainable, name=name, **kwargs)
# setup mixed precesion
self.dtype_policy = self._mixed_precision_policy \
if self._mixed_precision_policy.name == "infer_float32_vars" \
else self._dtype
if isinstance(self.dtype_policy, Policy):
self.mixed_precision = True
self.fp_type = tf.float32 # full precision
self.mp_type = tf.float16 # reduced precision
else:
self.mixed_precision = False
self.fp_type = self._dtype if self._dtype else tf.float32 # full precision
self.mp_type = self.fp_type # reduced precision
assert axis == 1, 'kernel requires channels_first data_format'
self.axis = axis
self.norm_ax = None
self.epsilon = epsilon
self.alpha_fwd = alpha_fwd
self.alpha_bkw = alpha_bkw
self.stream_mu_initializer = initializers.get(stream_mu_initializer)
self.stream_var_initializer = initializers.get(stream_var_initializer)
self.u_ctrl_initializer = initializers.get(u_ctrl_initializer)
self.v_ctrl_initializer = initializers.get(v_ctrl_initializer)
示例5: __init__
# 需要導入模塊: from tensorflow.python.keras import initializers [as 別名]
# 或者: from tensorflow.python.keras.initializers import get [as 別名]
def __init__(self,
input_dim,
output_dim,
adj,
num_features_nonzero,
dropout_rate=0.0,
is_sparse_inputs=False,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer='l2',
bias_regularizer='l2',
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(GraphConvolution, self).__init__()
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.kernels = list()
self.bias = None
self.input_dim = input_dim
self.output_dim = output_dim
self.is_sparse_inputs = is_sparse_inputs
self.num_features_nonzero = num_features_nonzero
self.adjs = [tf.SparseTensor(indices=am[0], values=am[1], dense_shape=am[2]) for am in adj]
self.dropout_rate = dropout_rate
示例6: __init__
# 需要導入模塊: from tensorflow.python.keras import initializers [as 別名]
# 或者: from tensorflow.python.keras.initializers import get [as 別名]
def __init__(self,
input_dim,
output_dim,
adj,
num_features_nonzero,
dropout_rate=0.0,
num_base=-1,
is_sparse_inputs=False,
featureless=False,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer="l2",
bias_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(RGraphConvolutionLayer, self).__init__()
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.bias = None
self.input_dim = input_dim
self.output_dim = output_dim
self.is_sparse_inputs = is_sparse_inputs
self.featureless = featureless
self.num_features_nonzero = num_features_nonzero
self.support = len(adj)
self.adj_list = [tf.SparseTensor(indices=adj[i][0], values=adj[i][1], dense_shape=adj[i][2])
for i in range(len(adj))]
self.dropout_rate = dropout_rate
self.num_bases = num_base
self.W = list()
示例7: __init__
# 需要導入模塊: from tensorflow.python.keras import initializers [as 別名]
# 或者: from tensorflow.python.keras.initializers import get [as 別名]
def __init__(self,
kernel_initializer = 'glorot_uniform',
kernel_regularizer=None,
kernel_constraint=None,
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(StressIntensityRange, self).__init__(**kwargs)
self.kernel_initializer = initializers.get(kernel_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
示例8: __init__
# 需要導入模塊: from tensorflow.python.keras import initializers [as 別名]
# 或者: from tensorflow.python.keras.initializers import get [as 別名]
def __init__(self,
kernel_initializer = 'glorot_uniform',
kernel_regularizer=None,
kernel_constraint=None,
table_shape=(1,4,4,1),
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(TableInterpolation, self).__init__(**kwargs)
self.kernel_initializer = initializers.get(kernel_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.table_shape = table_shape
示例9: build
# 需要導入模塊: from tensorflow.python.keras import initializers [as 別名]
# 或者: from tensorflow.python.keras.initializers import get [as 別名]
def build(self, input_shape):
"""Build `Layer`"""
input_shape = tensor_shape.TensorShape(input_shape).as_list()
self.input_spec = InputSpec(shape=input_shape)
if not self.layer.built:
self.layer.build(input_shape)
self.layer.built = False
if not hasattr(self.layer, "kernel"):
raise ValueError(
"`WeightNorm` must wrap a layer that" " contains a `kernel` for weights"
)
# The kernel's filter or unit dimension is -1
self.layer_depth = int(self.layer.kernel.shape[-1])
self.norm_axes = list(range(self.layer.kernel.shape.ndims - 1))
self.layer.v = self.layer.kernel
self.layer.g = self.layer.add_variable(
name="g",
shape=(self.layer_depth,),
initializer=initializers.get("ones"),
dtype=self.layer.kernel.dtype,
trainable=True,
)
with ops.control_dependencies([self.layer.g.assign(self._init_norm(self.layer.v))]):
self._compute_weights()
self.layer.built = True
super(WeightNorm, self).build()
self.built = True
# pylint: disable=arguments-differ
示例10: __init__
# 需要導入模塊: from tensorflow.python.keras import initializers [as 別名]
# 或者: from tensorflow.python.keras.initializers import get [as 別名]
def __init__(
self,
filters,
kernel_size,
strides=(1, 1),
padding="valid",
data_format=None,
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs,
):
super(Conv2D, self).__init__(**kwargs)
self.rank = 2
self.filters = filters
self.kernel_size = conv_utils.normalize_tuple(
kernel_size, self.rank, "kernel_size"
)
if self.kernel_size[0] != self.kernel_size[1]:
raise NotImplementedError(
"TF Encrypted currently only supports same "
"stride along the height and the width."
"You gave: {}".format(self.kernel_size)
)
self.strides = conv_utils.normalize_tuple(strides, self.rank, "strides")
self.padding = conv_utils.normalize_padding(padding).upper()
self.data_format = conv_utils.normalize_data_format(data_format)
if activation is not None:
logger.info(
"Performing an activation before a pooling layer can result "
"in unnecessary performance loss. Check model definition in "
"case of missed optimization."
)
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
# Not implemented arguments
default_args_check(dilation_rate, "dilation_rate", "Conv2D")
default_args_check(kernel_regularizer, "kernel_regularizer", "Conv2D")
default_args_check(bias_regularizer, "bias_regularizer", "Conv2D")
default_args_check(activity_regularizer, "activity_regularizer", "Conv2D")
default_args_check(kernel_constraint, "kernel_constraint", "Conv2D")
default_args_check(bias_constraint, "bias_constraint", "Conv2D")
示例11: __init__
# 需要導入模塊: from tensorflow.python.keras import initializers [as 別名]
# 或者: from tensorflow.python.keras.initializers import get [as 別名]
def __init__(self,
units,
relations,
kernel_basis_size=None,
activation=None,
use_bias=False,
batch_normalisation=False,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
feature_dropout=None,
support_dropout=None,
name='relational_graph_conv',
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(RelationalGraphConv, self).__init__(
activity_regularizer=regularizers.get(activity_regularizer),
name=name, **kwargs)
self.units = int(units)
self.relations = int(relations)
self.kernel_basis_size = (int(kernel_basis_size)
if kernel_basis_size is not None else None)
self.activation = activations.get(activation)
self.use_bias = use_bias
self.batch_normalisation = batch_normalisation
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.feature_dropout = feature_dropout
self.support_dropout = support_dropout
self.supports_masking = True
self.input_spec = InputSpec(min_ndim=2)
self.dense_layer = rgat_layers.BasisDecompositionDense(
units=self.units * self.relations,
basis_size=self.kernel_basis_size,
coefficients_size=self.relations,
use_bias=False,
kernel_initializer=self.kernel_initializer,
kernel_regularizer=self.kernel_regularizer,
kernel_constraint=self.kernel_constraint,
name=name + '_basis_decomposition_dense',
**kwargs)
if self.batch_normalisation:
self.batch_normalisation_layer = tf.layers.BatchNormalization()
示例12: build_network_graph
# 需要導入模塊: from tensorflow.python.keras import initializers [as 別名]
# 或者: from tensorflow.python.keras.initializers import get [as 別名]
def build_network_graph(self, x, last_timepoint=False):
"""
Given the input placeholder x, build the entire TCN graph
Args:
x: Input placeholder
last_timepoint: Whether or not to select only the last timepoint to output
Returns:
output of the TCN
"""
# loop and define multiple residual blocks
with tf.variable_scope("tcn"):
for i in range(self.n_hidden_layers):
dilation_size = 2 ** i
in_channels = self.n_features_in if i == 0 else self.hidden_sizes[i - 1]
out_channels = self.hidden_sizes[i]
with tf.variable_scope("residual_block_" + str(i)):
x = self._residual_block(
x,
in_channels,
out_channels,
dilation_size,
(self.kernel_size - 1) * dilation_size,
)
x = tf.nn.relu(x)
self.layer_activations.append(x)
self.sequence_output = x
# get outputs
if not last_timepoint:
prediction = self.sequence_output
else:
# last time point size (batch_size, hidden_sizes_encoder)
width = self.sequence_output.shape[1].value
lt = tf.squeeze(
tf.slice(self.sequence_output, [0, width - 1, 0], [-1, 1, -1]), axis=1
)
prediction = tf.layers.Dense(
1,
kernel_initializer=tf.initializers.random_normal(0, 0.01),
bias_initializer=tf.initializers.random_normal(0, 0.01),
)(lt)
return prediction