本文整理匯總了Python中tensorflow.python.keras.backend.mean方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.mean方法的具體用法?Python backend.mean怎麽用?Python backend.mean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.keras.backend
的用法示例。
在下文中一共展示了backend.mean方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: call
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import mean [as 別名]
def call(self, x):
mean = K.mean(x, axis=self.axis, keepdims=True)
std = K.std(x, axis=self.axis, keepdims=True)
return self.gamma * (x - mean) / (std + self.eps) + self.beta
示例2: l_2nd
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import mean [as 別名]
def l_2nd(beta):
def loss_2nd(y_true, y_pred):
b_ = np.ones_like(y_true)
b_[y_true != 0] = beta
x = K.square((y_true - y_pred) * b_)
t = K.sum(x, axis=-1, )
return K.mean(t)
return loss_2nd
示例3: line_loss
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import mean [as 別名]
def line_loss(y_true, y_pred):
return -K.mean(K.log(K.sigmoid(y_true*y_pred)))
示例4: call
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import mean [as 別名]
def call(self, x, mask=None):
"""1, mask is a bool type tensor, need casting before compute.
2, mask shape in 2 dimension (batch_size, feature_dimension)
"""
if mask is not None:
mask = K.repeat(mask, x.shape[-1])
mask = tf.transpose(mask, [0, 2, 1])
mask = tf.cast(mask, tf.float32)
x = x * mask
return K.sum(x, axis=1) / K.sum(mask, axis=1)
else:
return K.mean(x, axis=1)
示例5: __init__
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import mean [as 別名]
def __init__(self, latent_regularizer='bvae', beta=100., **kwargs):
'''
args:
------
latent_regularizer : str
Either 'bvae', 'vae', or 'no'
Determines whether regularization is applied
to the latent space representation.
beta : float
beta > 1, used for 'bvae' latent_regularizer,
(Unused if 'bvae' not selected)
------
ex.
sample = SampleLayer('bvae', 16)([mean, logvar])
'''
if latent_regularizer.lower() in ['bvae', 'vae']:
self.reg = latent_regularizer
else:
self.reg = None
if self.reg == 'bvae':
self.beta = beta
elif self.reg == 'vae':
self.beta = 1.
super(SampleLayer, self).__init__(**kwargs)
示例6: call
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import mean [as 別名]
def call(self, x, training=None):
if len(x) != 2:
raise Exception('input layers must be a list: mean and logvar')
if len(x[0].shape) != 2 or len(x[1].shape) != 2:
raise Exception('input shape is not a vector [batchSize, latentSize]')
mean = x[0]
logvar = x[1]
# trick to allow setting batch at train/eval time
if mean.shape[0].value == None or logvar.shape[0].value == None:
return mean + 0*logvar # Keras needs the *0 so the gradinent is not None
if self.reg is not None:
# kl divergence:
latent_loss = -0.5 * (1 + logvar
- K.square(mean)
- K.exp(logvar))
latent_loss = K.sum(latent_loss, axis=-1) # sum over latent dimension
latent_loss = K.mean(latent_loss, axis=0) # avg over batch
# use beta to force less usage of vector space:
latent_loss = self.beta * latent_loss
self.add_loss(latent_loss, x)
def reparameterization_trick():
epsilon = K.random_normal(shape=logvar.shape,
mean=0., stddev=1.)
stddev = K.exp(logvar*0.5)
return mean + stddev * epsilon
return K.in_train_phase(reparameterization_trick, mean + 0*logvar, training=training) # TODO figure out why this is not working in the specified tf version???
示例7: compute_cmvn
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import mean [as 別名]
def compute_cmvn(sums, square, count):
''' compute global feature mean and variance
vars = E(x^2) - (E(x))^2
'''
mean = sums / count
var = (square / count) - np.square(mean)
return mean, var
示例8: load_cmvn
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import mean [as 別名]
def load_cmvn(path):
''' load mean and variance from cmvn.npy,
then convert to TF Tensor
'''
# [1, nbins, nchannels]
mean, variance = np.load(path)
# [1, 1, nbins, nchannels]
mean = np.expand_dims(mean, axis=0)
variance = np.expand_dims(variance, axis=0)
mean = tf.convert_to_tensor(mean, dtype=tf.float32, name='cmvn_mean')
variance = tf.convert_to_tensor(
variance, dtype=tf.float32, name='cmvn_variance')
return mean, variance
示例9: apply_cmvn
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import mean [as 別名]
def apply_cmvn(feats, mean, variance, epsilon=1e-9):
''' TF: apply CMVN on feature'''
return (feats - mean) * tf.rsqrt(variance + epsilon)
示例10: apply_local_cmvn
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import mean [as 別名]
def apply_local_cmvn(feats, epsilon=1e-9):
''' feats: (NHWC) '''
mean = tf.expand_dims(keras_backend.mean(feats, axis=1), axis=1)
var = tf.expand_dims(keras_backend.var(feats, axis=1), axis=1)
feats = (feats - mean) * tf.rsqrt(var + epsilon)
return feats
示例11: call
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import mean [as 別名]
def call(self, inputs):
mean = K.mean(inputs, axis=self.axis, keepdims=True)
variance = K.mean(K.square(inputs - mean), axis=-1, keepdims=True)
std = K.sqrt(variance + self.eps)
outputs = (inputs - mean) / std
if self.scale:
outputs *= self.gamma
if self.center:
outputs += self.beta
return outputs