本文整理匯總了Python中tensorflow.python.keras.backend.get_value方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.get_value方法的具體用法?Python backend.get_value怎麽用?Python backend.get_value使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.keras.backend
的用法示例。
在下文中一共展示了backend.get_value方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_config
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import get_value [as 別名]
def get_config(self):
config = {
"percent_on": self.percent_on,
"k_inference_factor": self.k_inference_factor,
"boost_strength": K.get_value(self.boost_strength),
"boost_strength_factor": self.boost_strength_factor,
"duty_cycle_period": self.duty_cycle_period,
}
config.update(super(KWinnersBase, self).get_config())
return config
示例2: call
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import get_value [as 別名]
def call(self, inputs, training=None, **kwargs):
inputs = super().call(inputs, **kwargs)
k = K.in_test_phase(x=self.k_inference, alt=self.k, training=training)
kwinners = compute_kwinners(
x=inputs,
k=k,
duty_cycles=self.duty_cycles,
boost_strength=K.get_value(self.boost_strength),
)
duty_cycles = K.in_train_phase(
lambda: self.compute_duty_cycle(kwinners),
self.duty_cycles,
training=training,
)
self.add_update(self.duty_cycles.assign(duty_cycles, read_value=False))
increment = K.in_train_phase(K.shape(inputs)[0], 0, training=training)
self.add_update(
self.learning_iterations.assign_add(increment, read_value=False)
)
return kwinners
示例3: testSetTFVariableHyper
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import get_value [as 別名]
def testSetTFVariableHyper(self, name, val):
kwargs = {'learning_rate': 0.01, 'damping': 0.001}
kwargs[name] = tf.Variable(45.0)
opt = optimizers.Kfac(model=_simple_mlp(), loss='mse', **kwargs)
setattr(opt, name, val)
with self.subTest(name='AssignedCorrectly'):
self.assertEqual(backend.get_value(getattr(opt, name)), val)
if hasattr(opt.optimizer, name):
self.assertEqual(backend.get_value(getattr(opt.optimizer, name)), val)
with self.subTest(name='SetError'):
with self.assertRaisesRegex(ValueError, 'Dynamic reassignment only.*'):
setattr(opt, name, tf.convert_to_tensor(2))
with self.assertRaisesRegex(ValueError, 'Dynamic reassignment only.*'):
setattr(opt, name, tf.Variable(2))
示例4: testSetFloatHyper
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import get_value [as 別名]
def testSetFloatHyper(self, name, val):
kwargs = {'learning_rate': 0.01, 'damping': 0.001}
kwargs[name] = 45.0
opt = optimizers.Kfac(model=_simple_mlp(), loss='mse', **kwargs)
setattr(opt, name, val)
with self.subTest(name='AssignedCorrectly'):
self.assertEqual(backend.get_value(getattr(opt, name)), val)
if hasattr(opt.optimizer, name):
self.assertEqual(backend.get_value(getattr(opt.optimizer, name)), val)
with self.subTest(name='SetError'):
with self.assertRaisesRegex(ValueError, 'Dynamic reassignment only.*'):
setattr(opt, name, tf.convert_to_tensor(2))
with self.assertRaisesRegex(ValueError, 'Dynamic reassignment only.*'):
setattr(opt, name, tf.Variable(2))
示例5: testInferredBatchSize
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import get_value [as 別名]
def testInferredBatchSize(self):
dataset = tf.data.Dataset.from_tensors(([1.], [1.]))
dataset = dataset.repeat().batch(11, drop_remainder=True)
train_batch = dataset.make_one_shot_iterator().get_next()
model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,))])
loss = 'mse'
train_batch = dataset.make_one_shot_iterator().get_next()
optimizer = optimizers.Kfac(damping=10.,
train_batch=train_batch,
model=model,
adaptive=True,
loss=loss,
qmodel_update_rescale=0.01)
model.compile(optimizer, loss)
model.train_on_batch(train_batch[0], train_batch[1])
self.assertEqual(
tf.keras.backend.get_value(optimizer.optimizer._batch_size), 11)
示例6: testGettingHyper
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import get_value [as 別名]
def testGettingHyper(self, hyper_ctor):
kwarg_values = {'learning_rate': 3, 'damping': 20, 'momentum': 13}
kwargs = {k: hyper_ctor(v) for k, v in kwarg_values.items()}
opt = optimizers.Kfac(model=_simple_mlp(), loss='mse', **kwargs)
get_value = backend.get_value
tf_opt = opt.optimizer
with self.subTest(name='MatchesFloat'):
for name, val in kwarg_values.items():
self.assertEqual(get_value(getattr(opt, name)), val)
with self.subTest(name='MatchesTfOpt'):
self.assertEqual(get_value(opt.lr), get_value(tf_opt.learning_rate))
self.assertEqual(get_value(opt.damping), get_value(tf_opt.damping))
self.assertEqual(get_value(opt.momentum), get_value(tf_opt.momentum))
示例7: testGettingVariableHyperFails
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import get_value [as 別名]
def testGettingVariableHyperFails(self):
self.skipTest('This is not fixed in TF 1.14 yet.')
opt = optimizers.Kfac(model=_simple_mlp(),
loss='mse',
learning_rate=tf.Variable(0.1),
damping=tf.Variable(0.1))
with self.assertRaisesRegex(tf.errors.FailedPreconditionError,
'.*uninitialized.*'):
backend.get_value(opt.learning_rate)
示例8: testModifyingTensorHypersFails
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import get_value [as 別名]
def testModifyingTensorHypersFails(self, name, val):
kwargs = {'learning_rate': 3, 'damping': 5, 'momentum': 7}
kwargs[name] = tf.convert_to_tensor(val)
opt = optimizers.Kfac(model=_simple_mlp(), loss='mse', **kwargs)
with self.subTest(name='AssignedCorrectly'):
self.assertEqual(backend.get_value(getattr(opt, name)), val)
with self.subTest(name='RaisesError'):
with self.assertRaisesRegex(AttributeError,
"Can't set attribute: {}".format(name)):
setattr(opt, name, 17)
示例9: get_lr
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import get_value [as 別名]
def get_lr(self):
return K.get_value(self.training_models[0].optimizer.lr)
示例10: test_ragged_input_pad_and_mask
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import get_value [as 別名]
def test_ragged_input_pad_and_mask(self):
input_data = ragged_factory_ops.constant([[1, 2, 3, 4, 5], []])
expected_mask = np.array([True, False])
output = ToDense(pad_value=-1, mask=True)(input_data)
self.assertTrue(hasattr(output, "_keras_mask"))
self.assertIsNot(output._keras_mask, None)
self.assertAllEqual(K.get_value(output._keras_mask), expected_mask)
示例11: test_sparse_input_pad_and_mask
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import get_value [as 別名]
def test_sparse_input_pad_and_mask(self):
input_data = sparse_tensor.SparseTensor(
indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4])
expected_mask = np.array([True, True, False])
output = ToDense(pad_value=-1, mask=True)(input_data)
self.assertTrue(hasattr(output, "_keras_mask"))
self.assertIsNot(output._keras_mask, None)
self.assertAllEqual(K.get_value(output._keras_mask), expected_mask)
示例12: get_config
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import get_value [as 別名]
def get_config(self):
config = {
'lr': float(K.get_value(self.lr)),
'beta_1': float(K.get_value(self.beta_1)),
'beta_2': float(K.get_value(self.beta_2)),
'decay': float(K.get_value(self.decay)),
'epsilon': self.epsilon,
'amsgrad': self.amsgrad
}
base_config = super(RAdam, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例13: get_config
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import get_value [as 別名]
def get_config(self):
config = {'lr': float(K.get_value(self.lr)),
'beta_1': float(K.get_value(self.beta_1)),
'beta_2': float(K.get_value(self.beta_2)),
'decay': float(K.get_value(self.decay)),
'weight_decay': float(K.get_value(self.wd)),
'epsilon': self.epsilon}
base_config = super(AdamW, self).get_config()
return dict(list(base_config.items()) + list(config.items()))