當前位置: 首頁>>代碼示例>>Python>>正文


Python backend.floatx方法代碼示例

本文整理匯總了Python中tensorflow.python.keras.backend.floatx方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.floatx方法的具體用法?Python backend.floatx怎麽用?Python backend.floatx使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.keras.backend的用法示例。


在下文中一共展示了backend.floatx方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: new_sparse_categorical_accuracy

# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def new_sparse_categorical_accuracy(y_true, y_pred):
	y_pred_rank = ops.convert_to_tensor(y_pred).get_shape().ndims
	y_true_rank = ops.convert_to_tensor(y_true).get_shape().ndims
	# If the shape of y_true is (num_samples, 1), squeeze to (num_samples,)
	if (y_true_rank is not None) and (y_pred_rank is not None) and (len(K.int_shape(y_true)) == len(K.int_shape(y_pred))):
		y_true = array_ops.squeeze(y_true, [-1])
	y_pred = math_ops.argmax(y_pred, axis=-1)
	# If the predicted output and actual output types don't match, force cast them
	# to match.
	if K.dtype(y_pred) != K.dtype(y_true):
		y_pred = math_ops.cast(y_pred, K.dtype(y_true))
	return math_ops.cast(math_ops.equal(y_true, y_pred), K.floatx())

#Load the model 
開發者ID:HackerPoet,項目名稱:YouTubeCommenter,代碼行數:16,代碼來源:Generate.py

示例2: new_sparse_categorical_accuracy

# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def new_sparse_categorical_accuracy(y_true, y_pred):
	y_pred_rank = ops.convert_to_tensor(y_pred).get_shape().ndims
	y_true_rank = ops.convert_to_tensor(y_true).get_shape().ndims
	# If the shape of y_true is (num_samples, 1), squeeze to (num_samples,)
	if (y_true_rank is not None) and (y_pred_rank is not None) and (len(K.int_shape(y_true)) == len(K.int_shape(y_pred))):
		y_true = array_ops.squeeze(y_true, [-1])
	y_pred = math_ops.argmax(y_pred, axis=-1)
	# If the predicted output and actual output types don't match, force cast them
	# to match.
	if K.dtype(y_pred) != K.dtype(y_true):
		y_pred = math_ops.cast(y_pred, K.dtype(y_true))
	return math_ops.cast(math_ops.equal(y_true, y_pred), K.floatx())

#Build the training models 
開發者ID:HackerPoet,項目名稱:YouTubeCommenter,代碼行數:16,代碼來源:Train.py

示例3: __init__

# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def __init__(self, batch_size, output_dim, r, n_feed_frame=1, dtype=None):
        assert n_feed_frame <= r
        self._batch_size = batch_size
        self._output_dim = output_dim
        self._end_token = tf.tile([0.0], [output_dim * r])
        self.n_feed_frame = n_feed_frame
        self._dtype = dtype or backend.floatx() 
開發者ID:nii-yamagishilab,項目名稱:tacotron2,代碼行數:9,代碼來源:helpers.py

示例4: __init__

# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def __init__(self, num_symbols, embedding_dim, index_offset=0, output_dtype=None,
                 trainable=True, name=None, dtype=None, **kwargs):
        self._dtype = dtype or backend.floatx()
        # To ensure self.dtype is float type, set dtype explicitly.
        super(Embedding, self).__init__(name=name, trainable=trainable, dtype=self._dtype, **kwargs)
        self._num_symbols = num_symbols
        self._embedding_dim = embedding_dim
        self._output_dtype = output_dtype or backend.floatx()
        self.index_offset = tf.convert_to_tensor(index_offset, dtype=tf.int64) 
開發者ID:nii-yamagishilab,項目名稱:tacotron2,代碼行數:11,代碼來源:modules.py

示例5: __init__

# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def __init__(self,
                 num_units,
                 memory,
                 memory_sequence_length,
                 attention_kernel,
                 attention_filters,
                 smoothing=False,
                 cumulative_weights=True,
                 dtype=None,
                 name="LocationSensitiveAttention"):
        probability_fn = self._smoothing_normalization if smoothing else None

        super(LocationSensitiveAttention, self).__init__(
            num_units=num_units,
            memory=memory,
            memory_sequence_length=memory_sequence_length,
            probability_fn=probability_fn,
            dtype=dtype,
            name=name)
        self._cumulative_weights = cumulative_weights
        self._dtype = dtype or backend.floatx()

        self.location_convolution = tf.layers.Conv1D(filters=attention_filters,
                                                     kernel_size=attention_kernel,
                                                     padding="SAME",
                                                     use_bias=True,
                                                     bias_initializer=tf.zeros_initializer(dtype=memory.dtype),
                                                     name="location_features_convolution",
                                                     dtype=dtype)

        self.location_layer = tf.layers.Dense(units=num_units,
                                              use_bias=False,
                                              name="location_features_layer",
                                              dtype=dtype) 
開發者ID:nii-yamagishilab,項目名稱:tacotron2,代碼行數:36,代碼來源:tacotron_v2.py

示例6: build_masked_loss

# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def build_masked_loss(loss_function, mask_value=-1):
    """Builds a loss function that masks based on targets

    Args:
        loss_function: The loss function to mask
        mask_value: The value to mask in the targets

    Returns:
        function: a loss function that acts like loss_function with masked inputs
    """
    def masked_loss_function(y_true, y_pred, mask_value=mask_value):
        mask = K.cast(K.not_equal(y_true, mask_value), K.floatx())
        return loss_function(y_true * mask, y_pred * mask)

    return masked_loss_function 
開發者ID:marco-willi,項目名稱:camera-trap-classifier,代碼行數:17,代碼來源:utils.py

示例7: get_updates

# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]
        wd = self.wd * self.wd_normalizer  # decoupled weight decay (4/6)

        lr = self.lr
        if self.initial_decay > 0:
            lr = lr * (1. /
                       (1. + self.decay *
                             math_ops.cast(self.iterations,
                                          K.dtype(self.decay))))
        eta_t = lr / self.init_lr    # decoupled weight decay (5/6)

        with ops.control_dependencies([state_ops.assign_add(self.iterations, 1)]):
            t = math_ops.cast(self.iterations, K.floatx())
        """Bias corrections according to the Adam paper."""
        lr_t = lr * (K.sqrt(1. - math_ops.pow(self.beta_2, t)) /
                     (1. - math_ops.pow(self.beta_1, t)))

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        self.weights = [self.iterations] + ms + vs

        for p, g, m, v in zip(params, grads, ms, vs):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * math_ops.square(g)
            p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
            p_t -= eta_t * wd * p  # decoupled weight decay (6/6)

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, new_p))
        return self.updates 
開發者ID:jkjung-avt,項目名稱:keras_imagenet,代碼行數:41,代碼來源:adamw.py

示例8: _cast_tensor_to_floatx

# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def _cast_tensor_to_floatx(x):
  """Cast tensor to keras's floatx dtype if it is not already the same dtype."""
  if x.dtype == K.floatx():
    return x
  else:
    return tf.cast(x, K.floatx()) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:8,代碼來源:keras.py

示例9: __init__

# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def __init__(self, batch_size, mgc_output_dim, lf0_output_dim, r, n_feed_frame=1, min_iters=10, dtype=None):
        assert n_feed_frame <= r
        self._batch_size = batch_size
        self._mgc_output_dim = mgc_output_dim
        self._lf0_output_dim = lf0_output_dim
        self.r = r
        self.n_feed_frame = n_feed_frame
        self.min_iters = min_iters
        self._dtype = dtype or backend.floatx() 
開發者ID:nii-yamagishilab,項目名稱:self-attention-tacotron,代碼行數:11,代碼來源:helpers.py

示例10: __init__

# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def __init__(self,
                 shape,
                 my_initializer='RandomNormal',
                 dtype=None,
                 name=None,
                 mult=1.0,
                 **kwargs):

        
        # some input checking
        if not name:
            prefix = 'local_param'
            name = prefix + '_' + str(backend.get_uid(prefix))
            
        if not dtype:
            dtype = backend.floatx()
        
        self.shape = [1, *shape]
        self.my_initializer = my_initializer
        self.mult = mult

        if not name:
            prefix = 'param'
            name = '%s_%d' % (prefix, K.get_uid(prefix))
        Layer.__init__(self, name=name, **kwargs)

        # Create a trainable weight variable for this layer.
        with K.name_scope(self.name):
            self.kernel = self.add_weight(name='kernel', 
                                            shape=shape,
                                            initializer=self.my_initializer,
                                            dtype=dtype,
                                            trainable=True)

        # prepare output tensor, which is essentially the kernel.
        output_tensor = K.expand_dims(self.kernel, 0) * self.mult
        output_tensor._keras_shape = self.shape
        output_tensor._uses_learning_phase = False
        output_tensor._keras_history = base_layer.KerasHistory(self, 0, 0)
        output_tensor._batch_input_shape = self.shape

        self.trainable = True
        self.built = True    
        self.is_placeholder = False

        # create new node
        tensorflow.python.keras.engine.base_layer.node_module.Node(self,
            inbound_layers=[],
            node_indices=[],
            tensor_indices=[],
            input_tensors=[],
            output_tensors=[output_tensor],
            input_masks=[],
            output_masks=[None],
            input_shapes=[],
            output_shapes=self.shape) 
開發者ID:adalca,項目名稱:neuron,代碼行數:58,代碼來源:layers.py

示例11: _get_batches_of_transformed_samples

# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def _get_batches_of_transformed_samples(self, index_array):
        batch_x = np.zeros(
            (len(index_array),) + self.image_shape,
            dtype=floatx())
        grayscale = self.color_mode == 'grayscale'

        # Build batch of image data
        for i, j in enumerate(index_array):
            fname = self.filenames[j]
            img = load_img(
                os.path.join(self.directory, fname),
                grayscale=grayscale,
                target_size=None,
                interpolation=self.interpolation)
            x = img_to_array(img, data_format=self.data_format)

            # Pillow images should be closed after `load_img`, but not PIL images.
            if hasattr(img, 'close'):
                img.close()

            x = self.image_data_generator.standardize(x)
            batch_x[i] = x

        # Optionally save augmented images to disk for debugging purposes
        if self.save_to_dir:
            for i, j in enumerate(index_array):
                img = array_to_img(batch_x[i], self.data_format, scale=True)
                fname = '{prefix}_{index}_{hash}.{format}'.format(
                    prefix=self.save_prefix,
                    index=j,
                    hash=np.random.randint(1e7),
                    format=self.save_format)
                img.save(os.path.join(self.save_to_dir, fname))

        # Build batch of labels
        if self.class_mode == 'input':
            batch_y = batch_x.copy()
        elif self.class_mode == 'sparse':
            batch_y = self.classes[index_array]
        elif self.class_mode == 'binary':
            batch_y = self.classes[index_array].astype(floatx())
        elif self.class_mode == 'categorical':
            batch_y = np.zeros(
                (len(batch_x), self.num_classes),
                dtype=floatx())
            for i, label in enumerate(self.classes[index_array]):
                batch_y[i, label] = 1.
        else:
            return batch_x

        return batch_x, batch_y 
開發者ID:ryanfwy,項目名稱:BCNN-keras-clean,代碼行數:53,代碼來源:data_preprocesser.py

示例12: get_updates

# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = []

        lr = self.lr
        if self.initial_decay > 0:
            lr = lr * (  # pylint: disable=g-no-augmented-assignment
                    1. / (1. + self.decay * math_ops.cast(self.iterations,
                                                          K.dtype(self.decay))))

        with ops.control_dependencies([state_ops.assign_add(self.iterations, 1)]):
            t = math_ops.cast(self.iterations, K.floatx())

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        if self.amsgrad:
            vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        else:
            vhats = [K.zeros(1) for _ in params]
        self.weights = [self.iterations] + ms + vs + vhats

        beta_1_power = math_ops.pow(self.beta_1, t)
        beta_2_power = math_ops.pow(self.beta_2, t)
        rho_t = self.rho_inf - 2.0 * t * beta_2_power / (1.0 - beta_2_power)

        lr_t = tf.where(rho_t >= 5.0,
                        K.sqrt((rho_t - 4.) * (rho_t - 2.) * self.rho_inf /
                               ((self.rho_inf - 4.) * (self.rho_inf - 2.) * rho_t)) *
                        lr * (K.sqrt(1. - beta_2_power) / (1. - beta_1_power)),
                        self.warmup_coef * lr / (1. - beta_1_power))

        for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * math_ops.square(g)

            if self.amsgrad:
                vhat_t = math_ops.maximum(vhat, v_t)
                p_t = p - lr_t * tf.where(rho_t >= 5.0, m_t / (K.sqrt(vhat_t) + self.epsilon), m_t)
                self.updates.append(state_ops.assign(vhat, vhat_t))
            else:
                p_t = p - lr_t * tf.where(rho_t >= 5.0, m_t / (K.sqrt(v_t) + self.epsilon), m_t)

            self.updates.append(state_ops.assign(m, m_t))
            self.updates.append(state_ops.assign(v, v_t))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(state_ops.assign(p, new_p))
        return self.updates 
開發者ID:zheng-yuwei,項目名稱:multi-label-classification,代碼行數:54,代碼來源:radam.py


注:本文中的tensorflow.python.keras.backend.floatx方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。