本文整理匯總了Python中tensorflow.python.keras.backend.floatx方法的典型用法代碼示例。如果您正苦於以下問題:Python backend.floatx方法的具體用法?Python backend.floatx怎麽用?Python backend.floatx使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.keras.backend
的用法示例。
在下文中一共展示了backend.floatx方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: new_sparse_categorical_accuracy
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def new_sparse_categorical_accuracy(y_true, y_pred):
y_pred_rank = ops.convert_to_tensor(y_pred).get_shape().ndims
y_true_rank = ops.convert_to_tensor(y_true).get_shape().ndims
# If the shape of y_true is (num_samples, 1), squeeze to (num_samples,)
if (y_true_rank is not None) and (y_pred_rank is not None) and (len(K.int_shape(y_true)) == len(K.int_shape(y_pred))):
y_true = array_ops.squeeze(y_true, [-1])
y_pred = math_ops.argmax(y_pred, axis=-1)
# If the predicted output and actual output types don't match, force cast them
# to match.
if K.dtype(y_pred) != K.dtype(y_true):
y_pred = math_ops.cast(y_pred, K.dtype(y_true))
return math_ops.cast(math_ops.equal(y_true, y_pred), K.floatx())
#Load the model
示例2: new_sparse_categorical_accuracy
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def new_sparse_categorical_accuracy(y_true, y_pred):
y_pred_rank = ops.convert_to_tensor(y_pred).get_shape().ndims
y_true_rank = ops.convert_to_tensor(y_true).get_shape().ndims
# If the shape of y_true is (num_samples, 1), squeeze to (num_samples,)
if (y_true_rank is not None) and (y_pred_rank is not None) and (len(K.int_shape(y_true)) == len(K.int_shape(y_pred))):
y_true = array_ops.squeeze(y_true, [-1])
y_pred = math_ops.argmax(y_pred, axis=-1)
# If the predicted output and actual output types don't match, force cast them
# to match.
if K.dtype(y_pred) != K.dtype(y_true):
y_pred = math_ops.cast(y_pred, K.dtype(y_true))
return math_ops.cast(math_ops.equal(y_true, y_pred), K.floatx())
#Build the training models
示例3: __init__
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def __init__(self, batch_size, output_dim, r, n_feed_frame=1, dtype=None):
assert n_feed_frame <= r
self._batch_size = batch_size
self._output_dim = output_dim
self._end_token = tf.tile([0.0], [output_dim * r])
self.n_feed_frame = n_feed_frame
self._dtype = dtype or backend.floatx()
示例4: __init__
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def __init__(self, num_symbols, embedding_dim, index_offset=0, output_dtype=None,
trainable=True, name=None, dtype=None, **kwargs):
self._dtype = dtype or backend.floatx()
# To ensure self.dtype is float type, set dtype explicitly.
super(Embedding, self).__init__(name=name, trainable=trainable, dtype=self._dtype, **kwargs)
self._num_symbols = num_symbols
self._embedding_dim = embedding_dim
self._output_dtype = output_dtype or backend.floatx()
self.index_offset = tf.convert_to_tensor(index_offset, dtype=tf.int64)
示例5: __init__
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def __init__(self,
num_units,
memory,
memory_sequence_length,
attention_kernel,
attention_filters,
smoothing=False,
cumulative_weights=True,
dtype=None,
name="LocationSensitiveAttention"):
probability_fn = self._smoothing_normalization if smoothing else None
super(LocationSensitiveAttention, self).__init__(
num_units=num_units,
memory=memory,
memory_sequence_length=memory_sequence_length,
probability_fn=probability_fn,
dtype=dtype,
name=name)
self._cumulative_weights = cumulative_weights
self._dtype = dtype or backend.floatx()
self.location_convolution = tf.layers.Conv1D(filters=attention_filters,
kernel_size=attention_kernel,
padding="SAME",
use_bias=True,
bias_initializer=tf.zeros_initializer(dtype=memory.dtype),
name="location_features_convolution",
dtype=dtype)
self.location_layer = tf.layers.Dense(units=num_units,
use_bias=False,
name="location_features_layer",
dtype=dtype)
示例6: build_masked_loss
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def build_masked_loss(loss_function, mask_value=-1):
"""Builds a loss function that masks based on targets
Args:
loss_function: The loss function to mask
mask_value: The value to mask in the targets
Returns:
function: a loss function that acts like loss_function with masked inputs
"""
def masked_loss_function(y_true, y_pred, mask_value=mask_value):
mask = K.cast(K.not_equal(y_true, mask_value), K.floatx())
return loss_function(y_true * mask, y_pred * mask)
return masked_loss_function
示例7: get_updates
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
wd = self.wd * self.wd_normalizer # decoupled weight decay (4/6)
lr = self.lr
if self.initial_decay > 0:
lr = lr * (1. /
(1. + self.decay *
math_ops.cast(self.iterations,
K.dtype(self.decay))))
eta_t = lr / self.init_lr # decoupled weight decay (5/6)
with ops.control_dependencies([state_ops.assign_add(self.iterations, 1)]):
t = math_ops.cast(self.iterations, K.floatx())
"""Bias corrections according to the Adam paper."""
lr_t = lr * (K.sqrt(1. - math_ops.pow(self.beta_2, t)) /
(1. - math_ops.pow(self.beta_1, t)))
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
self.weights = [self.iterations] + ms + vs
for p, g, m, v in zip(params, grads, ms, vs):
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = (self.beta_2 * v) + (1. - self.beta_2) * math_ops.square(g)
p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)
p_t -= eta_t * wd * p # decoupled weight decay (6/6)
self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t))
new_p = p_t
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
示例8: _cast_tensor_to_floatx
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def _cast_tensor_to_floatx(x):
"""Cast tensor to keras's floatx dtype if it is not already the same dtype."""
if x.dtype == K.floatx():
return x
else:
return tf.cast(x, K.floatx())
示例9: __init__
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def __init__(self, batch_size, mgc_output_dim, lf0_output_dim, r, n_feed_frame=1, min_iters=10, dtype=None):
assert n_feed_frame <= r
self._batch_size = batch_size
self._mgc_output_dim = mgc_output_dim
self._lf0_output_dim = lf0_output_dim
self.r = r
self.n_feed_frame = n_feed_frame
self.min_iters = min_iters
self._dtype = dtype or backend.floatx()
示例10: __init__
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def __init__(self,
shape,
my_initializer='RandomNormal',
dtype=None,
name=None,
mult=1.0,
**kwargs):
# some input checking
if not name:
prefix = 'local_param'
name = prefix + '_' + str(backend.get_uid(prefix))
if not dtype:
dtype = backend.floatx()
self.shape = [1, *shape]
self.my_initializer = my_initializer
self.mult = mult
if not name:
prefix = 'param'
name = '%s_%d' % (prefix, K.get_uid(prefix))
Layer.__init__(self, name=name, **kwargs)
# Create a trainable weight variable for this layer.
with K.name_scope(self.name):
self.kernel = self.add_weight(name='kernel',
shape=shape,
initializer=self.my_initializer,
dtype=dtype,
trainable=True)
# prepare output tensor, which is essentially the kernel.
output_tensor = K.expand_dims(self.kernel, 0) * self.mult
output_tensor._keras_shape = self.shape
output_tensor._uses_learning_phase = False
output_tensor._keras_history = base_layer.KerasHistory(self, 0, 0)
output_tensor._batch_input_shape = self.shape
self.trainable = True
self.built = True
self.is_placeholder = False
# create new node
tensorflow.python.keras.engine.base_layer.node_module.Node(self,
inbound_layers=[],
node_indices=[],
tensor_indices=[],
input_tensors=[],
output_tensors=[output_tensor],
input_masks=[],
output_masks=[None],
input_shapes=[],
output_shapes=self.shape)
示例11: _get_batches_of_transformed_samples
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def _get_batches_of_transformed_samples(self, index_array):
batch_x = np.zeros(
(len(index_array),) + self.image_shape,
dtype=floatx())
grayscale = self.color_mode == 'grayscale'
# Build batch of image data
for i, j in enumerate(index_array):
fname = self.filenames[j]
img = load_img(
os.path.join(self.directory, fname),
grayscale=grayscale,
target_size=None,
interpolation=self.interpolation)
x = img_to_array(img, data_format=self.data_format)
# Pillow images should be closed after `load_img`, but not PIL images.
if hasattr(img, 'close'):
img.close()
x = self.image_data_generator.standardize(x)
batch_x[i] = x
# Optionally save augmented images to disk for debugging purposes
if self.save_to_dir:
for i, j in enumerate(index_array):
img = array_to_img(batch_x[i], self.data_format, scale=True)
fname = '{prefix}_{index}_{hash}.{format}'.format(
prefix=self.save_prefix,
index=j,
hash=np.random.randint(1e7),
format=self.save_format)
img.save(os.path.join(self.save_to_dir, fname))
# Build batch of labels
if self.class_mode == 'input':
batch_y = batch_x.copy()
elif self.class_mode == 'sparse':
batch_y = self.classes[index_array]
elif self.class_mode == 'binary':
batch_y = self.classes[index_array].astype(floatx())
elif self.class_mode == 'categorical':
batch_y = np.zeros(
(len(batch_x), self.num_classes),
dtype=floatx())
for i, label in enumerate(self.classes[index_array]):
batch_y[i, label] = 1.
else:
return batch_x
return batch_x, batch_y
示例12: get_updates
# 需要導入模塊: from tensorflow.python.keras import backend [as 別名]
# 或者: from tensorflow.python.keras.backend import floatx [as 別名]
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = []
lr = self.lr
if self.initial_decay > 0:
lr = lr * ( # pylint: disable=g-no-augmented-assignment
1. / (1. + self.decay * math_ops.cast(self.iterations,
K.dtype(self.decay))))
with ops.control_dependencies([state_ops.assign_add(self.iterations, 1)]):
t = math_ops.cast(self.iterations, K.floatx())
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
if self.amsgrad:
vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
else:
vhats = [K.zeros(1) for _ in params]
self.weights = [self.iterations] + ms + vs + vhats
beta_1_power = math_ops.pow(self.beta_1, t)
beta_2_power = math_ops.pow(self.beta_2, t)
rho_t = self.rho_inf - 2.0 * t * beta_2_power / (1.0 - beta_2_power)
lr_t = tf.where(rho_t >= 5.0,
K.sqrt((rho_t - 4.) * (rho_t - 2.) * self.rho_inf /
((self.rho_inf - 4.) * (self.rho_inf - 2.) * rho_t)) *
lr * (K.sqrt(1. - beta_2_power) / (1. - beta_1_power)),
self.warmup_coef * lr / (1. - beta_1_power))
for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = (self.beta_2 * v) + (1. - self.beta_2) * math_ops.square(g)
if self.amsgrad:
vhat_t = math_ops.maximum(vhat, v_t)
p_t = p - lr_t * tf.where(rho_t >= 5.0, m_t / (K.sqrt(vhat_t) + self.epsilon), m_t)
self.updates.append(state_ops.assign(vhat, vhat_t))
else:
p_t = p - lr_t * tf.where(rho_t >= 5.0, m_t / (K.sqrt(v_t) + self.epsilon), m_t)
self.updates.append(state_ops.assign(m, m_t))
self.updates.append(state_ops.assign(v, v_t))
new_p = p_t
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(state_ops.assign(p, new_p))
return self.updates