本文整理匯總了Python中tensorflow.python.framework.tensor_util.constant_value_as_shape方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor_util.constant_value_as_shape方法的具體用法?Python tensor_util.constant_value_as_shape怎麽用?Python tensor_util.constant_value_as_shape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.tensor_util
的用法示例。
在下文中一共展示了tensor_util.constant_value_as_shape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _TileGradShape
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def _TileGradShape(op):
"""Shape function for the TileGrad op."""
multiples_shape = op.inputs[1].get_shape().with_rank(1)
input_shape = op.inputs[0].get_shape().with_rank(multiples_shape[0])
# NOTE(mrry): Represent `multiples` as a `TensorShape` because (i)
# it is a vector of non-negative integers, and (ii) doing so allows
# us to handle partially-known multiples.
multiples = tensor_util.constant_value_as_shape(op.inputs[1]).with_rank(
input_shape.ndims)
if multiples.ndims is None:
return [tensor_shape.unknown_shape()]
else:
output_dims = []
for dim, multiple in zip(input_shape.dims, multiples.dims):
output_dims.append(dim // multiple)
return [tensor_shape.TensorShape(output_dims)]
示例2: _FillShape
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def _FillShape(op):
"""Shape function for the Fill op.
This op takes a vector of dimensions and a scalar, and produces a
tensor with the given dimensions.
Args:
op: A Fill Operation.
Returns:
A single-element list containing the shape of the output.
Raises:
ValueError: If the shapes or arguments are known to be invalid.
"""
op.inputs[0].get_shape().assert_has_rank(1)
op.inputs[1].get_shape().assert_has_rank(0)
fill_dims = tensor_util.constant_value(op.inputs[0])
if fill_dims is not None and any(d < 0 for d in fill_dims):
raise ValueError("Fill dimensions must be >= 0")
return [tensor_util.constant_value_as_shape(op.inputs[0])]
示例3: get_shape
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def get_shape(self):
"""Get the `TensorShape` representing the shape of the dense tensor.
Returns:
A `TensorShape` object.
"""
return tensor_util.constant_value_as_shape(self._dense_shape)
示例4: output_shapes
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def output_shapes(self):
def _padded_shape_to_batch_shape(s):
return tensor_shape.vector(None).concatenate(
tensor_util.constant_value_as_shape(s))
return nest.map_structure(_padded_shape_to_batch_shape, self._padded_shapes)
示例5: _to_batched_tensor_list
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def _to_batched_tensor_list(self, value):
if self._dense_shape.merge_with(
tensor_util.constant_value_as_shape(value.dense_shape)).ndims == 0:
raise ValueError(
"Unbatching a sparse tensor is only supported for rank >= 1")
return [sparse_ops.serialize_many_sparse(value, out_type=dtypes.variant)]
示例6: from_value
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def from_value(value):
sparse_tensor = sparse_tensor_lib.SparseTensor.from_value(value)
return SparseTensorStructure(
sparse_tensor.dtype,
tensor_util.constant_value_as_shape(sparse_tensor.dense_shape))
示例7: _SliceShape
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def _SliceShape(op):
"""Shape function for array_ops.slice."""
input_shape = op.inputs[0].get_shape()
begin_shape = op.inputs[1].get_shape().with_rank(1)
sizes_shape = op.inputs[2].get_shape().with_rank(1)
ndims = begin_shape.merge_with(sizes_shape)[0].value
if ndims is not None:
input_shape.assert_has_rank(ndims)
# NOTE(mrry): Use `constant_value_as_shape()` to handle
# partially-known values.
begin_value = tensor_util.constant_value_as_shape(
op.inputs[1]).with_rank(ndims)
# NOTE(mrry): We can't use `constant_value_as_shape()` for `sizes`
# because it might contain -1, which can't be represented as a
# `TensorShape`.
sizes_value = tensor_util.constant_value(op.inputs[2])
if sizes_value is not None:
returned_dims = []
for i, (slice_size, begin_dim) in enumerate(zip(sizes_value.ravel(),
begin_value.dims)):
if slice_size != -1:
returned_dims.append(slice_size)
else:
returned_dims.append(input_shape[i] - begin_dim)
return [tensor_shape.TensorShape(returned_dims)]
else:
if input_shape.ndims is not None:
return [tensor_shape.unknown_shape(ndims=input_shape.ndims)]
elif ndims is not None:
return [tensor_shape.unknown_shape(ndims=ndims)]
else:
return [tensor_shape.unknown_shape()]
示例8: _ReshapeShape
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def _ReshapeShape(op):
"""Shape function for Reshape op."""
input_shape = op.inputs[0].get_shape()
if input_shape.ndims is not None:
num_elements = tensor_shape.Dimension(1)
for dim in input_shape.dims:
num_elements *= dim
else:
num_elements = tensor_shape.Dimension(None)
new_shape = tensor_util.constant_value_as_shape(op.inputs[1])
if new_shape.ndims is None:
# We have no information about the shape of the output.
return [new_shape]
if None not in new_shape.as_list():
# The new shape is fully defined.
if (num_elements.value is not None
and num_elements.value != np.prod(new_shape)):
raise ValueError(
"Cannot reshape a tensor with %d elements to shape %s (%d elements)"
% (num_elements.value, new_shape, np.prod(new_shape)))
elif num_elements.value is not None:
# We know the number of elements, so we can calculate the missing
# dimension in the new_shape.
known_elements = 1
unknown_indices = []
for i, dim in enumerate(new_shape):
if dim.value is None:
unknown_indices.append(i)
else:
known_elements *= dim.value
if known_elements != 0:
if num_elements % known_elements != 0:
raise ValueError("input has %s elements, which isn't divisible by %d" %
(num_elements, known_elements))
if len(unknown_indices) == 1:
unknown_index = unknown_indices[0]
new_shape = new_shape.merge_with(
new_shape[:unknown_index].concatenate(
[num_elements // known_elements]).concatenate(
new_shape[unknown_index+1:]))
return [new_shape]
示例9: _TileShape
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def _TileShape(op):
"""Shape function for the Tile op.
This op has two inputs:
* input: A rank-N tensor.
* multiples: A length-N vector, in which the i^th element contains
the factor by which `input` will be tiled in the i^th dimension.
It has one output, which has the same rank as input, and additional
elements according to the values in multiples
Args:
op: A Tile Operation.
Returns:
A single-element list containing the shape of the output.
"""
multiples_shape = op.inputs[1].get_shape().with_rank(1)
input_shape = op.inputs[0].get_shape().with_rank(multiples_shape[0].value)
# NOTE(mrry): Represent `multiples` as a `TensorShape` because (i)
# it is a vector of non-negative integers, and (ii) doing so allows
# us to handle partially-known multiples.
multiples = tensor_util.constant_value_as_shape(op.inputs[1]).with_rank(
input_shape.ndims)
if multiples.ndims is None:
return [tensor_shape.unknown_shape()]
else:
output_dims = []
for dim, multiple in zip(input_shape.dims, multiples.dims):
output_dims.append(dim * multiple)
return [tensor_shape.TensorShape(output_dims)]
示例10: testConstant
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def testConstant(self):
np_val = np.random.rand(3).astype(np.int32)
tf_val = tf.constant(np_val)
self.assertEqual(tf.TensorShape(np_val),
tensor_util.constant_value_as_shape(tf_val))
tf_val = tf.constant([], dtype=tf.int32)
self.assertEqual(tf.TensorShape([]),
tensor_util.constant_value_as_shape(tf_val))
示例11: testShape
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def testShape(self):
tf_val = tf.shape(tf.constant(0.0, shape=[1, 2, 3]))
c_val = tensor_util.constant_value_as_shape(tf_val)
self.assertEqual(tf.TensorShape([1, 2, 3]), c_val)
示例12: testPack
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def testPack(self):
tf_val = tf.stack([tf.constant(16), 37, tf.placeholder(tf.int32)])
c_val = tensor_util.constant_value_as_shape(tf_val)
self.assertEqual([16, 37, None], c_val.as_list())
示例13: testConcat
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def testConcat(self):
tf_val = tf.concat(0, [[16, 37], tf.placeholder(tf.int32, shape=(2,))])
c_val = tensor_util.constant_value_as_shape(tf_val)
self.assertEqual([16, 37, None, None], c_val.as_list())
tf_val = tf.concat(0,
[[16, 37], tf.placeholder(tf.int32, shape=(1,)), [48]])
c_val = tensor_util.constant_value_as_shape(tf_val)
self.assertEqual([16, 37, None, 48], c_val.as_list())
示例14: get_shape
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def get_shape(self):
"""Get the `TensorShape` that represents the shape of the dense tensor.
Returns:
A `TensorShape` object.
"""
return tensor_util.constant_value_as_shape(self._shape)
示例15: output_shapes
# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import constant_value_as_shape [as 別名]
def output_shapes(self):
def _padded_shape_to_batch_shape(s):
return tensor_shape.vector(None).concatenate(
tensor_util.constant_value_as_shape(s))
return nest.map_structure(_padded_shape_to_batch_shape, self._padded_shapes)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:9,代碼來源:dataset_ops.py