當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor_util.MakeNdarray方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.tensor_util.MakeNdarray方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor_util.MakeNdarray方法的具體用法?Python tensor_util.MakeNdarray怎麽用?Python tensor_util.MakeNdarray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.tensor_util的用法示例。


在下文中一共展示了tensor_util.MakeNdarray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _SumGrad

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def _SumGrad(op, grad):
  """Gradient for Sum."""
  # Fast path for when reducing to a scalar and ndims is known: adds only
  # Reshape and Tile ops (and possibly a Shape).
  if (op.inputs[0].get_shape().ndims is not None and
      op.inputs[1].op.type == "Const"):
    rank = op.inputs[0].get_shape().ndims
    axes = tensor_util.MakeNdarray(op.inputs[1].op.get_attr("value"))
    if np.array_equal(axes, np.arange(rank)):  # Reduce all dims.
      grad = array_ops.reshape(grad, [1] * rank)
      # If shape is not fully defined (but rank is), we use Shape.
      if op.inputs[0].get_shape().is_fully_defined():
        input_shape = op.inputs[0].get_shape().as_list()
      else:
        input_shape = array_ops.shape(op.inputs[0])
      return [array_ops.tile(grad, input_shape), None]

  input_shape = array_ops.shape(op.inputs[0])
  output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
  tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
  grad = array_ops.reshape(grad, output_shape_kept_dims)
  return [array_ops.tile(grad, tile_scaling), None] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:math_grad.py

示例2: values_from_const

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def values_from_const(node_def):
  """Extracts the values from a const NodeDef as a numpy ndarray.

  Args:
    node_def: Const NodeDef that has the values we want to access.

  Returns:
    Numpy ndarray containing the values.

  Raises:
    ValueError: If the node isn't a Const.
  """
  if node_def.op != "Const":
    raise ValueError(
        "Node named '%s' should be a Const op for values_from_const." %
        node_def.name)
  input_tensor = node_def.attr["value"].tensor
  tensor_value = tensor_util.MakeNdarray(input_tensor)
  return tensor_value 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:optimize_for_inference_lib.py

示例3: _SumGrad

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def _SumGrad(op, grad):
  """Gradient for Sum."""
  # Fast path for when reducing to a scalar and ndims is known: adds only
  # Reshape and Tile ops (and possibly a Shape).
  if (op.inputs[0].get_shape().ndims is not None and op.inputs[1].op.type ==
      "Const"):
    rank = op.inputs[0].get_shape().ndims
    axes = tensor_util.MakeNdarray(op.inputs[1].op.get_attr("value"))
    if np.array_equal(axes, np.arange(rank)):  # Reduce all dims.
      grad = array_ops.reshape(grad, [1] * rank)
      # If shape is not fully defined (but rank is), we use Shape.
      if op.inputs[0].get_shape().is_fully_defined():
        input_shape = op.inputs[0].get_shape().as_list()
      else:
        input_shape = array_ops.shape(op.inputs[0])
      return [array_ops.tile(grad, input_shape), None]

  input_shape = array_ops.shape(op.inputs[0])
  output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1])
  tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
  grad = array_ops.reshape(grad, output_shape_kept_dims)
  return [array_ops.tile(grad, tile_scaling), None] 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:24,代碼來源:math_grad.py

示例4: testHalf

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def testHalf(self):
    t = tensor_util.make_tensor_proto(np.array([10.0, 20.0], dtype=np.float16))
    self.assertProtoEquals("""
      dtype: DT_HALF
      tensor_shape {
        dim {
          size: 2
        }
      }
      half_val: 18688
      half_val: 19712
      """, t)

    a = tensor_util.MakeNdarray(t)
    self.assertEquals(np.float16, a.dtype)
    self.assertAllClose(np.array([10.0, 20.0], dtype=np.float16), a) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:tensor_util_test.py

示例5: testLargeNegativeInt

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def testLargeNegativeInt(self):
    # We don't use the min np.int64 value here
    # because it breaks np.abs().
    #
    # np.iinfo(np.int64).min = -9223372036854775808
    # np.iinfo(np.int64).max = 9223372036854775807
    # np.abs(-9223372036854775808) = -9223372036854775808
    value = np.iinfo(np.int64).min + 1
    t = tensor_util.make_tensor_proto(value)
    self.assertProtoEquals("""
      dtype: DT_INT64
      tensor_shape {}
      int64_val: %d
      """ % value, t)
    a = tensor_util.MakeNdarray(t)
    self.assertEquals(np.int64, a.dtype)
    self.assertAllClose(np.array(value, dtype=np.int64), a) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:tensor_util_test.py

示例6: testComplex64N

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def testComplex64N(self):
    t = tensor_util.make_tensor_proto([(1+2j), (3+4j), (5+6j)], shape=[1, 3],
                                      dtype=tf.complex64)
    self.assertProtoEquals("""
      dtype: DT_COMPLEX64
      tensor_shape { dim { size: 1 } dim { size: 3 } }
      scomplex_val: 1
      scomplex_val: 2
      scomplex_val: 3
      scomplex_val: 4
      scomplex_val: 5
      scomplex_val: 6
      """, t)
    a = tensor_util.MakeNdarray(t)
    self.assertEquals(np.complex64, a.dtype)
    self.assertAllEqual(np.array([[(1+2j), (3+4j), (5+6j)]]), a) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:tensor_util_test.py

示例7: testComplex128N

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def testComplex128N(self):
    t = tensor_util.make_tensor_proto([(1+2j), (3+4j), (5+6j)], shape=[1, 3],
                                      dtype=tf.complex128)
    self.assertProtoEquals("""
      dtype: DT_COMPLEX128
      tensor_shape { dim { size: 1 } dim { size: 3 } }
      dcomplex_val: 1
      dcomplex_val: 2
      dcomplex_val: 3
      dcomplex_val: 4
      dcomplex_val: 5
      dcomplex_val: 6
      """, t)
    a = tensor_util.MakeNdarray(t)
    self.assertEquals(np.complex128, a.dtype)
    self.assertAllEqual(np.array([[(1+2j), (3+4j), (5+6j)]]), a) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:tensor_util_test.py

示例8: testComplex64NpArray

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def testComplex64NpArray(self):
    t = tensor_util.make_tensor_proto(
        np.array([[(1+2j), (3+4j)], [(5+6j), (7+8j)]]), dtype=tf.complex64)
    # scomplex_val are real_0, imag_0, real_1, imag_1, ...
    self.assertProtoEquals("""
      dtype: DT_COMPLEX64
      tensor_shape { dim { size: 2 } dim { size: 2 } }
      scomplex_val: 1
      scomplex_val: 2
      scomplex_val: 3
      scomplex_val: 4
      scomplex_val: 5
      scomplex_val: 6
      scomplex_val: 7
      scomplex_val: 8
      """, t)
    a = tensor_util.MakeNdarray(t)
    self.assertEquals(np.complex64, a.dtype)
    self.assertAllEqual(np.array([[(1+2j), (3+4j)], [(5+6j), (7+8j)]]), a) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:tensor_util_test.py

示例9: quantize_weight_rounded

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def quantize_weight_rounded(input_node):
  """Returns a replacement node for input_node containing bucketed floats."""
  input_tensor = input_node.attr["value"].tensor
  tensor_value = tensor_util.MakeNdarray(input_tensor)
  shape = input_tensor.tensor_shape
  # Currently, the parameter FLAGS.bitdepth is used to compute the
  # number of buckets as 1 << FLAGS.bitdepth, meaning the number of
  # buckets can only be a power of 2.
  # This could be fixed by introducing a new parameter, num_buckets,
  # which would allow for more flexibility in chosing the right model
  # size/accuracy tradeoff. But I didn't want to add more parameters
  # to this script than absolutely necessary.
  num_buckets = 1 << FLAGS.bitdepth
  tensor_value_rounded = quantize_array(tensor_value, num_buckets)
  tensor_shape_list = tensor_util.TensorShapeProtoToList(shape)
  return [create_constant_node(input_node.name, tensor_value_rounded,
                               tf.float32, shape=tensor_shape_list)] 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:19,代碼來源:quantize_graph.py

示例10: _get_bias

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def _get_bias(self, source_node, IR_node):
        if not source_node.out_edges:
            return

        add_node = self.tf_graph.get_node(source_node.out_edges[0])
        if add_node.type != "Add" and add_node.type != "BiasAdd":
            return

        variable = self.check_const(self.tf_graph.get_node(add_node.in_edges[1])) #add_bias node
        if not variable or variable.type != 'Const':
            return


        bias_value = variable.get_attr('value')
        bias = tensor_util.MakeNdarray(bias_value)

        # assert variable.get_attr('_output_shapes')[0].dim[0].size == IR_node.attr['kernel_shape'].list.i[-1]


        add_node.real_name = IR_node.name
        add_node.covered = True
        IR_node.attr['use_bias'].b = True
        current_layer = self.weights[source_node.name]
        current_layer['bias'] = bias 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:26,代碼來源:tensorflow_frozenparser.py

示例11: rename_StridedSlice

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def rename_StridedSlice(self, source_node):
        IR_node = self._convert_identity_operation(source_node, end_idx=1, new_op = 'Slice')
        kwargs = {}
        kwargs = {
            'begin_mask' : source_node.get_attr('begin_mask'),
            'end_mask'   : source_node.get_attr('end_mask'),
        }

        starts = self.get_parent(source_node.name, [1]).layer.attr['value'].tensor
        starts = tensor_util.MakeNdarray(starts).tolist()
        kwargs['starts'] = starts

        ends = self.get_parent(source_node.name, [2]).layer.attr['value'].tensor
        ends = tensor_util.MakeNdarray(ends).tolist()
        kwargs['ends'] = ends

        if self.get_parent(source_node.name, [3]) != None:
            strides = self.get_parent(source_node.name, [3]).layer.attr['value'].tensor
            strides = tensor_util.MakeNdarray(strides).tolist()
            kwargs['strides'] = strides

        assign_IRnode_values(IR_node, kwargs) 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:24,代碼來源:tensorflow_frozenparser.py

示例12: rename_MatMul

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def rename_MatMul(self, source_node):
        IR_node = self._convert_identity_operation(source_node, end_idx=1)
        input_weight_node = self.src_graph.get_parent(source_node.name, [1])
        weightnode = self.check_const(input_weight_node)
        weight_value = weightnode.get_attr('value')

        weight = tensor_util.MakeNdarray(weight_value)
        self.set_weight(source_node.name, 'weights', weight)

        units = source_node.layer.attr['_output_shapes'].list.shape[-1].dim[-1].size
        IR_node.attr['units'].i = units

        if source_node.out_edges and self.tf_graph.get_node(source_node.out_edges[0]).type == 'BiasAdd':
            add_node = self.tf_graph.get_node(source_node.out_edges[0])
            add_node.covered = True
            add_node.real_name = source_node.real_name

            TensorflowParser2._copy_and_reop(source_node, IR_node, 'FullyConnected')
            variable = self.tf_graph.get_node(add_node.in_edges[1]) #add_bias node
            biasnode = self.check_const(variable)
            bias_value = biasnode.get_attr('value')
            bias = tensor_util.MakeNdarray(bias_value)
            self.set_weight(source_node.name, 'bias', bias)
            IR_node.attr['use_bias'].b = True 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:26,代碼來源:tensorflow_frozenparser.py

示例13: _rename_Const

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def _rename_Const(self, source_node):
        IR_node = self._convert_identity_operation(source_node, in_edge_count=0, new_op='Constant') # Constant
        value = source_node.get_attr('value')
        if value.float_val:
            shape = tuple(self.tensor_shape_to_list(value.tensor_shape))
            value = np.full(shape, value.float_val[0])
        elif value.int_val:
            shape = tuple(self.tensor_shape_to_list(value.tensor_shape))
            value = np.full(shape, value.int_val[0])
        else:
            value = np.array(tensor_util.MakeNdarray(value).tolist())
        
        if value.ndim > 1:
            self.set_weight(source_node.name, 'value', value)
        else:
            kwargs = {'value': value}
            assign_IRnode_values(IR_node, kwargs) 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:19,代碼來源:tensorflow_parser.py

示例14: rename_Slice

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def rename_Slice(self, source_node):
        input_node_begin = self.get_parent(source_node.name, [1])
        input_node_size = self.get_parent(source_node.name, [2])

        begin = tensor_util.MakeNdarray(input_node_begin.layer.attr['value'].tensor)
        size = tensor_util.MakeNdarray(input_node_size.layer.attr['value'].tensor)

        IR_node = self._convert_identity_operation(source_node, in_edge_count=1, new_op='Slice')

        # TODO:  axis
        end = size + begin
        kwargs = {
            'starts' : begin,
            'ends' : end
        }

        assign_IRnode_values(IR_node, kwargs) 
開發者ID:microsoft,項目名稱:MMdnn,代碼行數:19,代碼來源:tensorflow_parser.py

示例15: quantize_weight_rounded

# 需要導入模塊: from tensorflow.python.framework import tensor_util [as 別名]
# 或者: from tensorflow.python.framework.tensor_util import MakeNdarray [as 別名]
def quantize_weight_rounded(input_node):
  """Returns a replacement node for input_node containing bucketed floats."""
  input_tensor = input_node.attr["value"].tensor
  tensor_value = tensor_util.MakeNdarray(input_tensor)
  shape = input_tensor.tensor_shape
  # Currently, the parameter FLAGS.bitdepth is used to compute the
  # number of buckets as 1 << FLAGS.bitdepth, meaning the number of
  # buckets can only be a power of 2.
  # This could be fixed by introducing a new parameter, num_buckets,
  # which would allow for more flexibility in chosing the right model
  # size/accuracy tradeoff. But I didn't want to add more parameters
  # to this script than absolutely necessary.
  num_buckets = 1 << FLAGS.bitdepth
  tensor_value_rounded = quantize_array(tensor_value, num_buckets)
  tensor_shape_list = tensor_util.TensorShapeProtoToList(shape)
  return [
      create_constant_node(
          input_node.name,
          tensor_value_rounded,
          dtypes.float32,
          shape=tensor_shape_list)
  ] 
開發者ID:googlecodelabs,項目名稱:tensorflow-for-poets-2,代碼行數:24,代碼來源:quantize_graph.py


注:本文中的tensorflow.python.framework.tensor_util.MakeNdarray方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。