本文整理匯總了Python中tensorflow.python.framework.tensor_shape.unknown_shape方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor_shape.unknown_shape方法的具體用法?Python tensor_shape.unknown_shape怎麽用?Python tensor_shape.unknown_shape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.tensor_shape
的用法示例。
在下文中一共展示了tensor_shape.unknown_shape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: fix_image_flip_shape
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def fix_image_flip_shape(image, result):
"""Set the shape to 3 dimensional if we don't know anything else.
Args:
image: original image size
result: flipped or transformed image
Returns:
An image whose shape is at least None,None,None.
"""
image_shape = image.get_shape()
if image_shape == tensor_shape.unknown_shape():
result.set_shape([None, None, None])
else:
result.set_shape(image_shape)
return result
# =========================================================================== #
# Image + BBoxes methods: cropping, resizing, flipping, ...
# =========================================================================== #
示例2: __init__
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def __init__(self, dtype, shape, accumulator_ref):
"""Creates a new ConditionalAccumulator.
Args:
dtype: Datatype of the accumulated gradients.
shape: Shape of the accumulated gradients.
accumulator_ref: A handle to the conditional accumulator, created by sub-
classes
"""
self._dtype = dtype
if shape is not None:
self._shape = tensor_shape.TensorShape(shape)
else:
self._shape = tensor_shape.unknown_shape()
self._accumulator_ref = accumulator_ref
self._name = self._accumulator_ref.op.name.split("/")[-1]
示例3: _TileGradShape
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def _TileGradShape(op):
"""Shape function for the TileGrad op."""
multiples_shape = op.inputs[1].get_shape().with_rank(1)
input_shape = op.inputs[0].get_shape().with_rank(multiples_shape[0])
# NOTE(mrry): Represent `multiples` as a `TensorShape` because (i)
# it is a vector of non-negative integers, and (ii) doing so allows
# us to handle partially-known multiples.
multiples = tensor_util.constant_value_as_shape(op.inputs[1]).with_rank(
input_shape.ndims)
if multiples.ndims is None:
return [tensor_shape.unknown_shape()]
else:
output_dims = []
for dim, multiple in zip(input_shape.dims, multiples.dims):
output_dims.append(dim // multiple)
return [tensor_shape.TensorShape(output_dims)]
示例4: fix_image_flip_shape
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def fix_image_flip_shape(image, result):
"""Set the shape to 3 dimensional if we don't know anything else.
Args:
image: original image size
result: flipped or transformed image
Returns:
An image whose shape is at least None,None,None.
"""
image_shape = image.get_shape()
if image_shape == tensor_shape.unknown_shape():
result.set_shape([None, None, None])
else:
result.set_shape(image_shape)
return result
示例5: __init__
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def __init__(self, op, value_index, dtype):
"""Creates a new `Tensor`.
Args:
op: An `Operation`. `Operation` that computes this tensor.
value_index: An `int`. Index of the operation's endpoint that produces
this tensor.
dtype: A `DType`. Type of elements stored in this tensor.
Raises:
TypeError: If the op is not an `Operation`.
"""
if not isinstance(op, Operation):
raise TypeError("op needs to be an Operation: %s" % op)
self._op = op
self._value_index = value_index
self._dtype = dtypes.as_dtype(dtype)
self._shape = tensor_shape.unknown_shape()
# List of operations that use this Tensor as input. We maintain this list
# to easily navigate a computation graph.
self._consumers = []
# Attributes used for C++ shape inference. Not inspected, only forwarded.
self._handle_shape = tensor_shape_pb2.TensorShapeProto()
self._handle_dtype = types_pb2.DT_INVALID
示例6: testSplitShape
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def testSplitShape(self):
with self.test_session():
ta = tensor_array_ops.TensorArray(
dtype=tf.float32, tensor_array_name="foo",
size=0, dynamic_size=True, infer_shape=True)
value = tf.constant([[1.0, -1.0], [2.0, -2.0], [3.0, -3.0]])
w0 = ta.split(value, [1, 1, 1])
r0 = w0.read(0)
self.assertAllEqual((1, 2), r0.get_shape())
ta1 = tensor_array_ops.TensorArray(
dtype=tf.float32, tensor_array_name="foo1",
size=0, dynamic_size=True, infer_shape=True)
w0 = ta1.split(value, [1, 2])
r0 = w0.read(0)
self.assertAllEqual(r0.get_shape(), tensor_shape.unknown_shape())
示例7: testWhile_5
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def testWhile_5(self):
with self.test_session():
def compute(i, c, o):
c = tf.slice(x, tf.expand_dims(i, 0), [1])
o = tf.concat(0, [o, c])
i = tf.add(i, 1)
return [i, c, o]
i = tf.convert_to_tensor(0)
c = tf.convert_to_tensor([0])
o = tf.convert_to_tensor([0])
x = tf.convert_to_tensor([1, 2, 3, 4, 5, 6])
s = tf.size(x)
r = tf.while_loop(
lambda i, c, o: tf.less(i, s), compute, [i, c, o],
[i.get_shape(), c.get_shape(), tensor_shape.unknown_shape()])
result = r[2].eval()
self.assertTrue(check_op_order(i.graph))
self.assertAllEqual(np.array([0, 1, 2, 3, 4, 5, 6]), result)
示例8: testWhileFuncBasic
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def testWhileFuncBasic(self):
@function.Defun(tf.float32)
def func(x):
return tf.square(tf.square(x))
with self.test_session():
x = tf.constant(2.0, tf.float32)
r = tf.while_loop(
lambda i, v: i < 2,
lambda i, v: [i + 1, func(v)],
[tf.constant(0), x],
[tensor_shape.unknown_shape(), tensor_shape.unknown_shape()])
self.assertEqual(r[1].eval(), 65536.0)
r = tf.gradients(r, x)[0]
self.assertEqual(r.eval(), 524288.0)
self.assertEqual(len([op for op in x.graph.get_operations()
if op.type == "Stack"]),
1)
示例9: _testStackWhileSwap
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def _testStackWhileSwap(self, use_gpu):
with self.test_session(use_gpu=use_gpu):
n = tf.constant(0)
h = gen_data_flow_ops._stack(tf.float32, stack_name="foo")
def c(x):
return tf.less(x, 10)
def b(x):
with tf.control_dependencies([x]):
a = tf.constant(np.ones(2000), dtype=tf.float32)
v = gen_data_flow_ops._stack_push(h, a, swap_memory=True)
with tf.control_dependencies([v]):
return tf.add(x, 1)
r = tf.while_loop(c, b, [n])
v = tf.constant(np.zeros(2000), dtype=tf.float32)
def c1(x, y):
return tf.greater(x, 0)
def b1(x, y):
nx = tf.sub(x, 1)
ny = y + gen_data_flow_ops._stack_pop(h, tf.float32)
return [nx, ny]
rx, ry = tf.while_loop(c1, b1, [r, v],
[r.get_shape(), tensor_shape.unknown_shape()])
self.assertAllClose(np.ones(2000) * 10.0, ry.eval())
示例10: _DynamicPartitionShape
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def _DynamicPartitionShape(op):
"""Shape function for data_flow_ops.dynamic_partition."""
data_shape = op.inputs[0].get_shape()
partitions_shape = op.inputs[1].get_shape()
# If we don't know the rank of partitions, we don't know anything
mid = partitions_shape.ndims
if mid is None:
result_shape = tensor_shape.unknown_shape()
else:
# data_shape must start with partitions_shape
partitions_shape.assert_is_compatible_with(data_shape[:mid])
# The partition shape is dynamic in the 0th dimension, and matches
# data_shape in the remaining dimensions.
result_shape = tensor_shape.TensorShape([None]).concatenate(
data_shape[mid:])
return [result_shape] * op.get_attr("num_partitions")
示例11: variable_op
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def variable_op(shape, dtype, name="Variable", set_shape=True, container="",
shared_name=""):
"""Deprecated. Used variable_op_v2 instead."""
if not set_shape:
shape = tensor_shape.unknown_shape()
ret = gen_state_ops._variable(shape=shape, dtype=dtype, name=name,
container=container, shared_name=shared_name)
# TODO(mrry): Move this to where it is used, so we can get rid of this op
# wrapper?
if set_shape:
ret.set_shape(shape)
return ret
示例12: _shape_common
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def _shape_common(s1, s2):
"""The greatest lower bound (ordered by specificity) TensorShape."""
s1 = tensor_shape.TensorShape(s1)
s2 = tensor_shape.TensorShape(s2)
if s1.ndims is None or s2.ndims is None or s1.ndims != s2.ndims:
return tensor_shape.unknown_shape()
d = [
d1 if d1 is not None and d1 == d2 else None
for (d1, d2) in zip(s1.as_list(), s2.as_list())]
return tensor_shape.TensorShape(d)
# pylint: disable=protected-access
示例13: _AccumulatorShape
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def _AccumulatorShape(inputs):
shape = tensor_shape.unknown_shape()
for i in inputs:
if isinstance(i, ops.Tensor):
shape = shape.merge_with(i.get_shape())
return shape
示例14: scatter
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def scatter(self, indices, value, name=None):
"""Scatter the values of a `Tensor` in specific indices of a `TensorArray`.
Args:
indices: A `1-D` `Tensor` taking values in `[0, max_value)`. If
the `TensorArray` is not dynamic, `max_value=size()`.
value: (N+1)-D. Tensor of type `dtype`. The Tensor to unpack.
name: A name for the operation (optional).
Returns:
A new TensorArray object with flow that ensures the scatter occurs.
Use this object all for subsequent operations.
Raises:
ValueError: if the shape inference fails.
"""
with ops.name_scope(name, "TensorArrayScatter",
[self._handle, value, indices]):
value = ops.convert_to_tensor(value, name="value")
with self._maybe_colocate_with(value):
flow_out = gen_data_flow_ops._tensor_array_scatter_v3(
handle=self._handle,
indices=indices,
value=value,
flow_in=self._flow,
name=name)
ta = TensorArray(
dtype=self._dtype, handle=self._handle, flow=flow_out,
colocate_with_first_write_call=self._colocate_with_first_write_call)
ta._infer_shape = self._infer_shape
ta._element_shape = self._element_shape
ta._colocate_with = self._colocate_with
if ta._infer_shape:
val_shape = flow_out.op.inputs[2].get_shape()
element_shape = tensor_shape.unknown_shape()
if val_shape.dims is not None:
element_shape = tensor_shape.TensorShape(val_shape.dims[1:])
ta._merge_element_shape(element_shape)
return ta
示例15: scatter
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import unknown_shape [as 別名]
def scatter(self, indices, value, name=None):
"""Scatter the values of a `Tensor` in specific indices of a `TensorArray`.
Args:
indices: A `1-D` `Tensor` taking values in `[0, max_value)`. If
the `TensorArray` is not dynamic, `max_value=size()`.
value: (N+1)-D. Tensor of type `dtype`. The Tensor to unpack.
name: A name for the operation (optional).
Returns:
A new TensorArray object with flow that ensures the scatter occurs.
Use this object all for subsequent operations.
Raises:
ValueError: if the shape inference fails.
"""
with ops.name_scope(name, "TensorArrayScatter",
[self._handle, value, indices]):
value = ops.convert_to_tensor(value, name="value")
_maybe_set_device(self._handle.op, value)
with ops.colocate_with(self._handle):
flow_out = gen_data_flow_ops._tensor_array_scatter_v3(
handle=self._handle,
indices=indices,
value=value,
flow_in=self._flow,
name=name)
ta = TensorArray(dtype=self._dtype, handle=self._handle, flow=flow_out)
ta._infer_shape = self._infer_shape
ta._element_shape = self._element_shape
if ta._infer_shape:
val_shape = flow_out.op.inputs[2].get_shape()
element_shape = tensor_shape.unknown_shape()
if val_shape.dims is not None:
element_shape = tensor_shape.TensorShape(val_shape.dims[1:])
ta._merge_element_shape(element_shape)
return ta