本文整理匯總了Python中tensorflow.python.framework.tensor_shape.dimension_value方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor_shape.dimension_value方法的具體用法?Python tensor_shape.dimension_value怎麽用?Python tensor_shape.dimension_value使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.tensor_shape
的用法示例。
在下文中一共展示了tensor_shape.dimension_value方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import dimension_value [as 別名]
def build(self, input_shape):
super().build(input_shape)
self.build = False
self.last_dim = tensor_shape.dimension_value(input_shape[-1])
self.noisy_w = self.add_weight(
'noise_kernel',
shape=[self.last_dim, self.units],
initializer=tf.random_normal_initializer(0.0, .1),
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
dtype=self.dtype,
trainable=True)
if self.use_bias:
self.noisy_b = self.add_weight(
'noise_bias',
shape=[self.units, ],
initializer=tf.constant_initializer(self.noise_sigma / (self.units**0.5)),
regularizer=self.bias_regularizer,
constraint=self.bias_constraint,
dtype=self.dtype,
trainable=True)
else:
self.bias = None
self.build = True
示例2: build
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import dimension_value [as 別名]
def build(self, input_shape):
if self.proj_weights is None:
input_dim = tensor_shape.dimension_value(input_shape[-1])
self.layer_weights = self.add_weight(
'output_layer_weights',
shape=[input_dim, self.output_dim],
initializer=self.kernel_initializer,
trainable=True)
super(OutputLayer, self).build(input_shape)
示例3: convert_legacy_structure
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import dimension_value [as 別名]
def convert_legacy_structure(output_types, output_shapes, output_classes):
"""Returns a `Structure` that represents the given legacy structure.
This method provides a way to convert from the existing `Dataset` and
`Iterator` structure-related properties to a `Structure` object. A "legacy"
structure is represented by the `tf.data.Dataset.output_types`,
`tf.data.Dataset.output_shapes`, and `tf.data.Dataset.output_classes`
properties.
TODO(b/110122868): Remove this function once `Structure` is used throughout
`tf.data`.
Args:
output_types: A nested structure of `tf.DType` objects corresponding to
each component of a structured value.
output_shapes: A nested structure of `tf.TensorShape` objects
corresponding to each component a structured value.
output_classes: A nested structure of Python `type` objects corresponding
to each component of a structured value.
Returns:
A `Structure`.
Raises:
TypeError: If a structure cannot be built from the arguments, because one of
the component classes in `output_classes` is not supported.
"""
flat_types = nest.flatten(output_types)
flat_shapes = nest.flatten(output_shapes)
flat_classes = nest.flatten(output_classes)
flat_ret = []
for flat_type, flat_shape, flat_class in zip(flat_types, flat_shapes,
flat_classes):
if isinstance(flat_class, Structure):
flat_ret.append(flat_class)
elif issubclass(flat_class, sparse_tensor_lib.SparseTensor):
flat_ret.append(SparseTensorStructure(flat_type, flat_shape))
elif issubclass(flat_class, ops.Tensor):
flat_ret.append(TensorStructure(flat_type, flat_shape))
elif issubclass(flat_class, tensor_array_ops.TensorArray):
# We sneaked the dynamic_size and infer_shape into the legacy shape.
flat_ret.append(
TensorArrayStructure(
flat_type, flat_shape[2:],
dynamic_size=tensor_shape.dimension_value(flat_shape[0]),
infer_shape=tensor_shape.dimension_value(flat_shape[1])))
else:
# NOTE(mrry): Since legacy structures produced by iterators only
# comprise Tensors, SparseTensors, and nests, we do not need to
# support all structure types here.
raise TypeError(
"Could not build a structure for output class %r" % (flat_class,))
ret = nest.pack_sequence_as(output_classes, flat_ret)
if isinstance(ret, Structure):
return ret
else:
return NestedStructure(ret)
# NOTE(mrry): The following classes make extensive use of non-public methods of
# their base class, so we disable the protected-access lint warning once here.
# pylint: disable=protected-access
# @tf_export("data.experimental.NestedStructure")