本文整理匯總了Python中tensorflow.python.framework.tensor_shape.as_shape方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor_shape.as_shape方法的具體用法?Python tensor_shape.as_shape怎麽用?Python tensor_shape.as_shape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.tensor_shape
的用法示例。
在下文中一共展示了tensor_shape.as_shape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _merge_batch_beams
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _merge_batch_beams(self, t, s=None):
"""Merges the tensor from a batch of beams into a batch by beams.
More exactly, t is a tensor of dimension [batch_size, beam_width, s]. We
reshape this into [batch_size*beam_width, s]
Args:
t: Tensor of dimension [batch_size, beam_width, s]
s: (Possibly known) depth shape.
Returns:
A reshaped version of t with dimension [batch_size * beam_width, s].
"""
if isinstance(s, ops.Tensor):
s = tensor_shape.as_shape(tensor_util.constant_value(s))
else:
s = tensor_shape.TensorShape(s)
t_shape = tf.shape(t)
static_batch_size = tensor_util.constant_value(self._batch_size)
batch_size_beam_width = (
None if static_batch_size is None
else static_batch_size * self._beam_width)
reshaped_t = tf.reshape(
t, tf.concat(
([self._batch_size * self._beam_width], t_shape[2:]), 0))
reshaped_t.set_shape(
(tensor_shape.TensorShape([batch_size_beam_width]).concatenate(s)))
return reshaped_t
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:27,代碼來源:beam_search_decoder_from_tensorflow.py
示例2: is_compatible_with
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def is_compatible_with(self, other):
"""Returns True if signatures are compatible."""
def _shape_is_compatible_0dim(this, other):
"""Checks that shapes are compatible skipping dim 0."""
other = tensor_shape.as_shape(other)
# If shapes are None (unknown) they may be compatible.
if this.dims is None or other.dims is None:
return True
if this.ndims != other.ndims:
return False
for dim, (x_dim, y_dim) in enumerate(zip(this.dims, other.dims)):
if dim == 0:
continue
if not x_dim.is_compatible_with(y_dim):
return False
return True
if other.is_sparse:
return self.is_sparse and self.dtype.is_compatible_with(other.dtype)
return (self.dtype.is_compatible_with(other.dtype) and
_shape_is_compatible_0dim(self.shape, other.shape) and
not self.is_sparse)
示例3: _state_size_with_prefix
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _state_size_with_prefix(state_size, prefix=None):
"""Helper function that enables int or TensorShape shape specification.
This function takes a size specification, which can be an integer or a
TensorShape, and converts it into a list of integers. One may specify any
additional dimensions that precede the final state size specification.
Args:
state_size: TensorShape or int that specifies the size of a tensor.
prefix: optional additional list of dimensions to prepend.
Returns:
result_state_size: list of dimensions the resulting tensor size.
"""
result_state_size = tensor_shape.as_shape(state_size).as_list()
if prefix is not None:
if not isinstance(prefix, list):
raise TypeError("prefix of _state_size_with_prefix should be a list.")
result_state_size = prefix + result_state_size
return result_state_size
示例4: _MakeShape
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _MakeShape(v, arg_name):
"""Convert v into a TensorShapeProto."""
# Args:
# v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
# arg_name: String, for error messages.
# Returns:
# A TensorShapeProto.
if isinstance(v, tensor_shape_pb2.TensorShapeProto):
for d in v.dim:
if d.name:
logging.warning("Warning: TensorShapeProto with a named dimension: %s",
str(v))
break
return v
return tensor_shape.as_shape(v).as_proto()
示例5: _prepare_output_as_AppendArrayToTensorProto
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _prepare_output_as_AppendArrayToTensorProto(
inference_output,
model_available_outputs):
response = predict_pb2.PredictResponse()
for response_output_name, model_output_name in \
model_available_outputs.items():
if model_output_name in inference_output:
dtype = dtypes.as_dtype(inference_output[model_output_name].dtype)
output_tensor = tensor_pb2.TensorProto(
dtype=dtype.as_datatype_enum,
tensor_shape=tensor_shape.as_shape(
inference_output[model_output_name].shape).as_proto())
result = inference_output[model_output_name].flatten()
tensor_util._NP_TO_APPEND_FN[dtype.as_numpy_dtype](output_tensor,
result)
response.outputs[response_output_name].CopyFrom(output_tensor)
return response
示例6: testConvertFromProto
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def testConvertFromProto(self):
def make_tensor_shape_proto(shape):
return tensor_shape_pb2.TensorShapeProto(
dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=x) for x in shape])
proto = make_tensor_shape_proto([])
self.assertEqual(tensor_shape.TensorShape([]),
tensor_shape.TensorShape(proto))
self.assertEqual(tensor_shape.TensorShape([]),
tensor_shape.as_shape(proto))
proto = make_tensor_shape_proto([1, 37, 42])
self.assertEqual(tensor_shape.TensorShape([1, 37, 42]),
tensor_shape.TensorShape(proto))
self.assertEqual(tensor_shape.TensorShape([1, 37, 42]),
tensor_shape.as_shape(proto))
partial_proto_shape = tensor_shape.as_shape(
make_tensor_shape_proto([-1, 37, 42]))
partial_shape = tensor_shape.TensorShape([None, 37, 42])
self.assertNotEqual(partial_proto_shape, partial_shape)
self.assertEqual(partial_proto_shape[0].value, None)
self.assertEqual(partial_proto_shape[1].value, 37)
self.assertEqual(partial_proto_shape[2].value, 42)
self.assertTrue(partial_shape.is_compatible_with(partial_proto_shape))
示例7: _state_size_with_prefix
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _state_size_with_prefix(state_size, prefix=None):
"""Helper function that enables int or TensorShape shape specification.
This function takes a size specification, which can be an integer or a
TensorShape, and converts it into a list of integers. One may specify any
additional dimensions that precede the final state size specification.
Args:
state_size: TensorShape or int that specifies the size of a tensor.
prefix: optional additional list of dimensions to prepend.
Returns:
result_state_size: list of dimensions the resulting tensor size.
"""
result_state_size = tensor_shape.as_shape(state_size).as_list()
if prefix is not None:
if not isinstance(prefix, list):
raise TypeError("prefix of _state_size_with_prefix should be a list.")
result_state_size = prefix + result_state_size
return result_state_size
示例8: _state_size_with_prefix
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _state_size_with_prefix(state_size, prefix=None):
"""Helper function that enables int or TensorShape shape specification.
This function takes a size specification, which can be an integer or a
TensorShape, and converts it into a list of integers. One may specify any
additional dimensions that precede the final state size specification.
:param state_size: TensorShape or int that specifies the size of a tensor.
prefix: optional additional list of dimensions to prepend.
:return: result_state_size: list of dimensions the resulting tensor size.
"""
result_state_size = tensor_shape.as_shape(state_size).as_list()
if prefix is not None:
if not isinstance(prefix, list):
raise TypeError("prefix of _state_size_with_prefix should be a list.")
result_state_size = prefix + result_state_size
return result_state_size
示例9: _state_size_with_prefix
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _state_size_with_prefix(state_size, prefix=None):
"""Helper function that enables int or TensorShape shape specification.
This function takes a size specification, which can be an integer or a
TensorShape, and converts it into a list of integers. One may specify any
additional dimensions that precede the final state size specification.
Args:
state_size: TensorShape or int that specifies the size of a tensor.
prefix: optional additional list of dimensions to prepend.
Returns:
result_state_size: list of dimensions the resulting tensor size.
"""
result_state_size = tensor_shape.as_shape(state_size).as_list()
if prefix is not None:
if not isinstance(prefix, list):
raise TypeError("prefix of _state_size_with_prefix should be a list.")
result_state_size = prefix + result_state_size
return result_state_size
示例10: _generate_zero_filled_state
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _generate_zero_filled_state(batch_size_tensor, state_size, dtype):
"""Generate a zero filled tensor with shape [batch_size, state_size]."""
if None in [batch_size_tensor, dtype]:
raise ValueError(
'batch_size and dtype cannot be None while constructing initial state: '
'batch_size={}, dtype={}'.format(batch_size_tensor, dtype))
if _is_multiple_state(state_size):
states = []
for dims in state_size:
flat_dims = tensor_shape.as_shape(dims).as_list()
init_state_size = [batch_size_tensor] + flat_dims
init_state = array_ops.zeros(init_state_size, dtype=dtype)
states.append(init_state)
return states
else:
flat_dims = tensor_shape.as_shape(state_size).as_list()
init_state_size = [batch_size_tensor] + flat_dims
return array_ops.zeros(init_state_size, dtype=dtype)
示例11: make_shape
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def make_shape(v, arg_name):
"""Convert v into a list."""
# Args:
# v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
# arg_name: String, for error messages.
# Returns:
# None if the rank is unknown, otherwise a list of ints (or Nones in the
# position where the dimension is unknown).
try:
shape = tensor_shape.as_shape(v)
except TypeError as e:
raise TypeError("Error converting %s to a TensorShape: %s." % (arg_name, e))
except ValueError as e:
raise ValueError("Error converting %s to a TensorShape: %s." % (arg_name,
e))
if shape.ndims is None:
return None
else:
return shape.as_list()
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:22,代碼來源:execute.py
示例12: _MakeShape
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _MakeShape(v, arg_name):
"""Convert v into a TensorShapeProto."""
# Args:
# v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
# arg_name: String, for error messages.
# Returns:
# A TensorShapeProto.
if isinstance(v, tensor_shape_pb2.TensorShapeProto):
for d in v.dim:
if d.name:
logging.warning("Warning: TensorShapeProto with a named dimension: %s",
str(v))
break
return v
try:
return tensor_shape.as_shape(v).as_proto()
except TypeError as e:
raise TypeError("Error converting %s to a TensorShape: %s" % (arg_name, e))
except ValueError as e:
raise ValueError("Error converting %s to a TensorShape: %s" % (arg_name, e))
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:23,代碼來源:op_def_library.py
示例13: _as_shape_list
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _as_shape_list(shapes, dtypes, unknown_dim_allowed=False,
unknown_rank_allowed=False):
"""Convert shapes to a list of tuples of int (or None)."""
del dtypes
if unknown_dim_allowed:
if (not isinstance(shapes, collections.Sequence)
or not shapes
or any(shape is None or isinstance(shape, int) for shape in shapes)):
raise ValueError(
"When providing partial shapes, a list of shapes must be provided.")
if shapes is None: return None
if isinstance(shapes, tensor_shape.TensorShape):
shapes = [shapes]
if not isinstance(shapes, (tuple, list)):
raise TypeError(
"shapes must be a TensorShape or a list or tuple of TensorShapes.")
if all(shape is None or isinstance(shape, int) for shape in shapes):
# We have a single shape.
shapes = [shapes]
shapes = [tensor_shape.as_shape(shape) for shape in shapes]
if not unknown_dim_allowed:
if any([not shape.is_fully_defined() for shape in shapes]):
raise ValueError("All shapes must be fully defined: %s" % shapes)
if not unknown_rank_allowed:
if any([shape.dims is None for shape in shapes]):
raise ValueError("All shapes must have a defined rank: %s" % shapes)
return shapes
示例14: zeros
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def zeros(shape, dtype=dtypes.float32, name=None):
"""Creates a tensor with all elements set to zero.
This operation returns a tensor of type `dtype` with shape `shape` and
all elements set to zero.
For example:
```python
tf.zeros([3, 4], tf.int32) ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
```
Args:
shape: Either a list of integers, or a 1-D `Tensor` of type `int32`.
dtype: The type of an element in the resulting `Tensor`.
name: A name for the operation (optional).
Returns:
A `Tensor` with all elements set to zero.
"""
dtype = dtypes.as_dtype(dtype).base_dtype
with ops.name_scope(name, "zeros", [shape]) as name:
if dtype == dtypes.bool:
zero = False
elif dtype == dtypes.string:
zero = ""
else:
zero = 0
try:
shape = tensor_shape.as_shape(shape)
output = constant(zero, shape=shape, dtype=dtype, name=name)
except (TypeError, ValueError):
shape = ops.convert_to_tensor(shape, dtype=dtypes.int32, name="shape")
output = fill(shape, constant(zero, dtype=dtype), name=name)
assert output.dtype.base_dtype == dtype
return output
示例15: ones
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def ones(shape, dtype=dtypes.float32, name=None):
"""Creates a tensor with all elements set to 1.
This operation returns a tensor of type `dtype` with shape `shape` and all
elements set to 1.
For example:
```python
tf.ones([2, 3], tf.int32) ==> [[1, 1, 1], [1, 1, 1]]
```
Args:
shape: Either a list of integers, or a 1-D `Tensor` of type `int32`.
dtype: The type of an element in the resulting `Tensor`.
name: A name for the operation (optional).
Returns:
A `Tensor` with all elements set to 1.
"""
dtype = dtypes.as_dtype(dtype).base_dtype
with ops.name_scope(name, "ones", [shape]) as name:
one = True if dtype == dtypes.bool else 1
try:
shape = tensor_shape.as_shape(shape)
output = constant(one, shape=shape, dtype=dtype, name=name)
except (TypeError, ValueError):
shape = ops.convert_to_tensor(shape, dtype=dtypes.int32, name="shape")
output = fill(shape, constant(one, dtype=dtype), name=name)
assert output.dtype.base_dtype == dtype
return output