當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor_shape.as_shape方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.tensor_shape.as_shape方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor_shape.as_shape方法的具體用法?Python tensor_shape.as_shape怎麽用?Python tensor_shape.as_shape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.tensor_shape的用法示例。


在下文中一共展示了tensor_shape.as_shape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _merge_batch_beams

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _merge_batch_beams(self, t, s=None):
        """Merges the tensor from a batch of beams into a batch by beams.
        More exactly, t is a tensor of dimension [batch_size, beam_width, s]. We
        reshape this into [batch_size*beam_width, s]
        Args:
          t: Tensor of dimension [batch_size, beam_width, s]
          s: (Possibly known) depth shape.
        Returns:
          A reshaped version of t with dimension [batch_size * beam_width, s].
        """
        if isinstance(s, ops.Tensor):
            s = tensor_shape.as_shape(tensor_util.constant_value(s))
        else:
            s = tensor_shape.TensorShape(s)
        t_shape = tf.shape(t)
        static_batch_size = tensor_util.constant_value(self._batch_size)
        batch_size_beam_width = (
            None if static_batch_size is None
            else static_batch_size * self._beam_width)
        reshaped_t = tf.reshape(
            t, tf.concat(
                ([self._batch_size * self._beam_width], t_shape[2:]), 0))
        reshaped_t.set_shape(
            (tensor_shape.TensorShape([batch_size_beam_width]).concatenate(s)))
        return reshaped_t 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:27,代碼來源:beam_search_decoder_from_tensorflow.py

示例2: is_compatible_with

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def is_compatible_with(self, other):
    """Returns True if signatures are compatible."""

    def _shape_is_compatible_0dim(this, other):
      """Checks that shapes are compatible skipping dim 0."""
      other = tensor_shape.as_shape(other)
      # If shapes are None (unknown) they may be compatible.
      if this.dims is None or other.dims is None:
        return True
      if this.ndims != other.ndims:
        return False
      for dim, (x_dim, y_dim) in enumerate(zip(this.dims, other.dims)):
        if dim == 0:
          continue
        if not x_dim.is_compatible_with(y_dim):
          return False
      return True

    if other.is_sparse:
      return self.is_sparse and self.dtype.is_compatible_with(other.dtype)
    return (self.dtype.is_compatible_with(other.dtype) and
            _shape_is_compatible_0dim(self.shape, other.shape) and
            not self.is_sparse) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:tensor_signature.py

示例3: _state_size_with_prefix

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _state_size_with_prefix(state_size, prefix=None):
  """Helper function that enables int or TensorShape shape specification.

  This function takes a size specification, which can be an integer or a
  TensorShape, and converts it into a list of integers. One may specify any
  additional dimensions that precede the final state size specification.

  Args:
    state_size: TensorShape or int that specifies the size of a tensor.
    prefix: optional additional list of dimensions to prepend.

  Returns:
    result_state_size: list of dimensions the resulting tensor size.
  """
  result_state_size = tensor_shape.as_shape(state_size).as_list()
  if prefix is not None:
    if not isinstance(prefix, list):
      raise TypeError("prefix of _state_size_with_prefix should be a list.")
    result_state_size = prefix + result_state_size
  return result_state_size 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:22,代碼來源:rnn_cell_impl.py

示例4: _MakeShape

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _MakeShape(v, arg_name):
  """Convert v into a TensorShapeProto."""
  # Args:
  #   v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
  #   arg_name: String, for error messages.

  # Returns:
  #   A TensorShapeProto.
  if isinstance(v, tensor_shape_pb2.TensorShapeProto):
    for d in v.dim:
      if d.name:
        logging.warning("Warning: TensorShapeProto with a named dimension: %s",
                        str(v))
        break
    return v
  return tensor_shape.as_shape(v).as_proto() 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:18,代碼來源:op_def_library.py

示例5: _prepare_output_as_AppendArrayToTensorProto

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _prepare_output_as_AppendArrayToTensorProto(
        inference_output,
        model_available_outputs):
    response = predict_pb2.PredictResponse()
    for response_output_name, model_output_name in \
            model_available_outputs.items():
        if model_output_name in inference_output:
            dtype = dtypes.as_dtype(inference_output[model_output_name].dtype)
            output_tensor = tensor_pb2.TensorProto(
                dtype=dtype.as_datatype_enum,
                tensor_shape=tensor_shape.as_shape(
                    inference_output[model_output_name].shape).as_proto())
            result = inference_output[model_output_name].flatten()
            tensor_util._NP_TO_APPEND_FN[dtype.as_numpy_dtype](output_tensor,
                                                               result)
            response.outputs[response_output_name].CopyFrom(output_tensor)
    return response 
開發者ID:openvinotoolkit,項目名稱:model_server,代碼行數:19,代碼來源:predict_utils.py

示例6: testConvertFromProto

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def testConvertFromProto(self):
    def make_tensor_shape_proto(shape):
      return tensor_shape_pb2.TensorShapeProto(
          dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=x) for x in shape])
    proto = make_tensor_shape_proto([])
    self.assertEqual(tensor_shape.TensorShape([]),
                     tensor_shape.TensorShape(proto))
    self.assertEqual(tensor_shape.TensorShape([]),
                     tensor_shape.as_shape(proto))

    proto = make_tensor_shape_proto([1, 37, 42])
    self.assertEqual(tensor_shape.TensorShape([1, 37, 42]),
                     tensor_shape.TensorShape(proto))
    self.assertEqual(tensor_shape.TensorShape([1, 37, 42]),
                     tensor_shape.as_shape(proto))

    partial_proto_shape = tensor_shape.as_shape(
        make_tensor_shape_proto([-1, 37, 42]))
    partial_shape = tensor_shape.TensorShape([None, 37, 42])
    self.assertNotEqual(partial_proto_shape, partial_shape)
    self.assertEqual(partial_proto_shape[0].value, None)
    self.assertEqual(partial_proto_shape[1].value, 37)
    self.assertEqual(partial_proto_shape[2].value, 42)
    self.assertTrue(partial_shape.is_compatible_with(partial_proto_shape)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:26,代碼來源:tensor_shape_test.py

示例7: _state_size_with_prefix

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _state_size_with_prefix(state_size, prefix=None):
    """Helper function that enables int or TensorShape shape specification.

    This function takes a size specification, which can be an integer or a
    TensorShape, and converts it into a list of integers. One may specify any
    additional dimensions that precede the final state size specification.

    Args:
        state_size: TensorShape or int that specifies the size of a tensor.
        prefix: optional additional list of dimensions to prepend.

    Returns:
        result_state_size: list of dimensions the resulting tensor size.
    """
    result_state_size = tensor_shape.as_shape(state_size).as_list()
    if prefix is not None:
        if not isinstance(prefix, list):
            raise TypeError("prefix of _state_size_with_prefix should be a list.")
        result_state_size = prefix + result_state_size
    return result_state_size 
開發者ID:thu-coai,項目名稱:ecm,代碼行數:22,代碼來源:rnn_cell.py

示例8: _state_size_with_prefix

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _state_size_with_prefix(state_size, prefix=None):
    """Helper function that enables int or TensorShape shape specification.
    This function takes a size specification, which can be an integer or a
    TensorShape, and converts it into a list of integers. One may specify any
    additional dimensions that precede the final state size specification.

    :param state_size: TensorShape or int that specifies the size of a tensor.
      prefix: optional additional list of dimensions to prepend.
    :return: result_state_size: list of dimensions the resulting tensor size.
    """
    result_state_size = tensor_shape.as_shape(state_size).as_list()
    if prefix is not None:
        if not isinstance(prefix, list):
            raise TypeError("prefix of _state_size_with_prefix should be a list.")
        result_state_size = prefix + result_state_size
    return result_state_size 
開發者ID:pnnl,項目名稱:safekit,代碼行數:18,代碼來源:tf_ops.py

示例9: _state_size_with_prefix

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _state_size_with_prefix(state_size, prefix=None):
    """Helper function that enables int or TensorShape shape specification.
    This function takes a size specification, which can be an integer or a
    TensorShape, and converts it into a list of integers. One may specify any
    additional dimensions that precede the final state size specification.
    Args:
      state_size: TensorShape or int that specifies the size of a tensor.
      prefix: optional additional list of dimensions to prepend.
    Returns:
      result_state_size: list of dimensions the resulting tensor size.
    """
    result_state_size = tensor_shape.as_shape(state_size).as_list()
    if prefix is not None:
        if not isinstance(prefix, list):
            raise TypeError("prefix of _state_size_with_prefix should be a list.")
        result_state_size = prefix + result_state_size
    return result_state_size 
開發者ID:YingZhangDUT,項目名稱:Cross-Modal-Projection-Learning,代碼行數:19,代碼來源:modules.py

示例10: _generate_zero_filled_state

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _generate_zero_filled_state(batch_size_tensor, state_size, dtype):
   """Generate a zero filled tensor with shape [batch_size, state_size]."""
   if None in [batch_size_tensor, dtype]:
       raise ValueError(
               'batch_size and dtype cannot be None while constructing initial state: '
               'batch_size={}, dtype={}'.format(batch_size_tensor, dtype))
   if _is_multiple_state(state_size):
       states = []
       for dims in state_size:
           flat_dims = tensor_shape.as_shape(dims).as_list()
           init_state_size = [batch_size_tensor] + flat_dims
           init_state = array_ops.zeros(init_state_size, dtype=dtype)
           states.append(init_state)
       return states
   else:
       flat_dims = tensor_shape.as_shape(state_size).as_list()
       init_state_size = [batch_size_tensor] + flat_dims
       return array_ops.zeros(init_state_size, dtype=dtype) 
開發者ID:PML-UCF,項目名稱:pinn,代碼行數:20,代碼來源:rnn.py

示例11: make_shape

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def make_shape(v, arg_name):
  """Convert v into a list."""
  # Args:
  #   v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
  #   arg_name: String, for error messages.

  # Returns:
  #   None if the rank is unknown, otherwise a list of ints (or Nones in the
  #   position where the dimension is unknown).
  try:
    shape = tensor_shape.as_shape(v)
  except TypeError as e:
    raise TypeError("Error converting %s to a TensorShape: %s." % (arg_name, e))
  except ValueError as e:
    raise ValueError("Error converting %s to a TensorShape: %s." % (arg_name,
                                                                    e))
  if shape.ndims is None:
    return None
  else:
    return shape.as_list() 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:22,代碼來源:execute.py

示例12: _MakeShape

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _MakeShape(v, arg_name):
  """Convert v into a TensorShapeProto."""
  # Args:
  #   v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape.
  #   arg_name: String, for error messages.

  # Returns:
  #   A TensorShapeProto.
  if isinstance(v, tensor_shape_pb2.TensorShapeProto):
    for d in v.dim:
      if d.name:
        logging.warning("Warning: TensorShapeProto with a named dimension: %s",
                        str(v))
        break
    return v
  try:
    return tensor_shape.as_shape(v).as_proto()
  except TypeError as e:
    raise TypeError("Error converting %s to a TensorShape: %s" % (arg_name, e))
  except ValueError as e:
    raise ValueError("Error converting %s to a TensorShape: %s" % (arg_name, e)) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:23,代碼來源:op_def_library.py

示例13: _as_shape_list

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def _as_shape_list(shapes, dtypes, unknown_dim_allowed=False,
                   unknown_rank_allowed=False):
  """Convert shapes to a list of tuples of int (or None)."""
  del dtypes
  if unknown_dim_allowed:
    if (not isinstance(shapes, collections.Sequence)
        or not shapes
        or any(shape is None or isinstance(shape, int) for shape in shapes)):
      raise ValueError(
          "When providing partial shapes, a list of shapes must be provided.")
  if shapes is None: return None
  if isinstance(shapes, tensor_shape.TensorShape):
    shapes = [shapes]
  if not isinstance(shapes, (tuple, list)):
    raise TypeError(
        "shapes must be a TensorShape or a list or tuple of TensorShapes.")
  if all(shape is None or isinstance(shape, int) for shape in shapes):
    # We have a single shape.
    shapes = [shapes]
  shapes = [tensor_shape.as_shape(shape) for shape in shapes]
  if not unknown_dim_allowed:
    if any([not shape.is_fully_defined() for shape in shapes]):
      raise ValueError("All shapes must be fully defined: %s" % shapes)
  if not unknown_rank_allowed:
    if any([shape.dims is None for shape in shapes]):
      raise ValueError("All shapes must have a defined rank: %s" % shapes)

  return shapes 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:30,代碼來源:data_flow_ops.py

示例14: zeros

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def zeros(shape, dtype=dtypes.float32, name=None):
  """Creates a tensor with all elements set to zero.

  This operation returns a tensor of type `dtype` with shape `shape` and
  all elements set to zero.

  For example:

  ```python
  tf.zeros([3, 4], tf.int32) ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
  ```

  Args:
    shape: Either a list of integers, or a 1-D `Tensor` of type `int32`.
    dtype: The type of an element in the resulting `Tensor`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` with all elements set to zero.
  """
  dtype = dtypes.as_dtype(dtype).base_dtype
  with ops.name_scope(name, "zeros", [shape]) as name:
    if dtype == dtypes.bool:
      zero = False
    elif dtype == dtypes.string:
      zero = ""
    else:
      zero = 0
    try:
      shape = tensor_shape.as_shape(shape)
      output = constant(zero, shape=shape, dtype=dtype, name=name)
    except (TypeError, ValueError):
      shape = ops.convert_to_tensor(shape, dtype=dtypes.int32, name="shape")
      output = fill(shape, constant(zero, dtype=dtype), name=name)
  assert output.dtype.base_dtype == dtype
  return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:array_ops.py

示例15: ones

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import as_shape [as 別名]
def ones(shape, dtype=dtypes.float32, name=None):
  """Creates a tensor with all elements set to 1.

  This operation returns a tensor of type `dtype` with shape `shape` and all
  elements set to 1.

  For example:

  ```python
  tf.ones([2, 3], tf.int32) ==> [[1, 1, 1], [1, 1, 1]]
  ```

  Args:
    shape: Either a list of integers, or a 1-D `Tensor` of type `int32`.
    dtype: The type of an element in the resulting `Tensor`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` with all elements set to 1.
  """
  dtype = dtypes.as_dtype(dtype).base_dtype
  with ops.name_scope(name, "ones", [shape]) as name:
    one = True if dtype == dtypes.bool else 1
    try:
      shape = tensor_shape.as_shape(shape)
      output = constant(one, shape=shape, dtype=dtype, name=name)
    except (TypeError, ValueError):
      shape = ops.convert_to_tensor(shape, dtype=dtypes.int32, name="shape")
      output = fill(shape, constant(one, dtype=dtype), name=name)
  assert output.dtype.base_dtype == dtype
  return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:33,代碼來源:array_ops.py


注:本文中的tensorflow.python.framework.tensor_shape.as_shape方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。