當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor_shape.TensorShape方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.tensor_shape.TensorShape方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor_shape.TensorShape方法的具體用法?Python tensor_shape.TensorShape怎麽用?Python tensor_shape.TensorShape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.tensor_shape的用法示例。


在下文中一共展示了tensor_shape.TensorShape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _rnn_output_size

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def _rnn_output_size(self):
        size = self._cell.output_size
        if self._output_layer is None:
            return size
        else:
            # To use layer's compute_output_shape, we need to convert the
            # RNNCell's output_size entries into shapes with an unknown
            # batch size.  We then pass this through the layer's
            # compute_output_shape and read off all but the first (batch)
            # dimensions to get the output size of the rnn with the layer
            # applied to the top.
            output_shape_with_unknown_batch = nest.map_structure(
                lambda s: tensor_shape.TensorShape([None]).concatenate(s),
                size)
            layer_output_shape = self._output_layer.compute_output_shape(  # pylint: disable=protected-access
                output_shape_with_unknown_batch)
        return nest.map_structure(lambda s: s[1:], layer_output_shape) 
開發者ID:vineetjohn,項目名稱:linguistic-style-transfer,代碼行數:19,代碼來源:custom_decoder.py

示例2: __init__

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def __init__(self, initialize_fn, sample_fn, next_inputs_fn,
                 sample_ids_shape=None, sample_ids_dtype=None):
        """Initializer.

        Args:
          initialize_fn: callable that returns `(finished, next_inputs)`
            for the first iteration.
          sample_fn: callable that takes `(time, outputs, state)`
            and emits tensor `sample_ids`.
          next_inputs_fn: callable that takes `(time, outputs, state, sample_ids)`
            and emits `(finished, next_inputs, next_state)`.
          sample_ids_shape: Either a list of integers, or a 1-D Tensor of type
            `int32`, the shape of each value in the `sample_ids` batch. Defaults to
            a scalar.
          sample_ids_dtype: The dtype of the `sample_ids` tensor. Defaults to int32.
        """
        self._initialize_fn = initialize_fn
        self._sample_fn = sample_fn
        self._next_inputs_fn = next_inputs_fn
        self._batch_size = None
        self._sample_ids_shape = tensor_shape.TensorShape(sample_ids_shape or [])
        self._sample_ids_dtype = sample_ids_dtype or dtypes.int32 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:24,代碼來源:tf_helpers.py

示例3: channel_dimension

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def channel_dimension(shape, data_format, min_rank=1):
  """Returns the channel dimension of shape, while checking it has min_rank.

  Args:
    shape: A `TensorShape`.
    data_format: `channels_first` or `channels_last`.
    min_rank: Integer, minimum rank of shape.

  Returns:
    The value of the first dimension.

  Raises:
    ValueError: if inputs don't have at least min_rank dimensions, or if the
      first dimension value is not defined.
  """
  return _get_dimension(shape, 1 if data_format == 'channels_first' else -1,
                        min_rank=min_rank) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:19,代碼來源:utils.py

示例4: _transpose_batch_time

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def _transpose_batch_time(x):
    """Transpose the batch and time dimensions of a Tensor.
    Retains as much of the static shape information as possible.
    Args:
        x: A tensor of rank 2 or higher.
    Returns:
        x transposed along the first two dimensions.
    Raises:
        ValueError: if `x` is rank 1 or lower.
    """
    x_static_shape = x.get_shape()
    if x_static_shape.ndims is not None and x_static_shape.ndims < 2:
        raise ValueError(
            "Expected input tensor %s to have rank at least 2, but saw shape: %s" %
            (x, x_static_shape))
    x_rank = array_ops.rank(x)
    x_t = array_ops.transpose(
        x, array_ops.concat(
            ([1, 0], math_ops.range(2, x_rank)), axis=0))
    x_t.set_shape(
        tensor_shape.TensorShape([
            x_static_shape[1].value, x_static_shape[0].value
        ]).concatenate(x_static_shape[2:]))
    return x_t 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:26,代碼來源:dynamic_decoder.py

示例5: _tile_batch

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def _tile_batch(t, multiplier):
    """Core single-tensor implementation of tile_batch."""
    t = ops.convert_to_tensor(t, name="t")
    shape_t = tf.shape(t)
    if t.shape.ndims is None or t.shape.ndims < 1:
        raise ValueError("t must have statically known rank")
    tiling = [1] * (t.shape.ndims + 1)
    tiling[1] = multiplier
    tiled_static_batch_size = (
        t.shape[0].value * multiplier if t.shape[0].value is not None else None)
    tiled = tf.tile(tf.expand_dims(t, 1), tiling)
    tiled = tf.reshape(
        tiled, tf.concat(([shape_t[0] * multiplier], shape_t[1:]), 0))
    tiled.set_shape(
        tensor_shape.TensorShape(
            [tiled_static_batch_size]).concatenate(t.shape[1:]))
    return tiled 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:19,代碼來源:beam_search_decoder_from_tensorflow.py

示例6: _rnn_output_size

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def _rnn_output_size(self):
        size = self._cell.output_size
        if self._output_layer is None:
            return size
        else:
            # To use layer's compute_output_shape, we need to convert the
            # RNNCell's output_size entries into shapes with an unknown
            # batch size.  We then pass this through the layer's
            # compute_output_shape and read off all but the first (batch)
            # dimensions to get the output size of the rnn with the layer
            # applied to the top.
            output_shape_with_unknown_batch = nest.map_structure(
                lambda s: tensor_shape.TensorShape([None]).concatenate(s),
                size)
            layer_output_shape = self._output_layer._compute_output_shape(  # pylint: disable=protected-access
                output_shape_with_unknown_batch)
            return nest.map_structure(lambda s: s[1:], layer_output_shape) 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:19,代碼來源:beam_search_decoder_from_tensorflow.py

示例7: _maybe_split_batch_beams

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def _maybe_split_batch_beams(self, t, s):
        """Maybe splits the tensor from a batch by beams into a batch of beams.
        We do this so that we can use nest and not run into problems with shapes.
        Args:
          t: Tensor of dimension [batch_size*beam_width, s]
          s: Tensor, Python int, or TensorShape.
        Returns:
          Either a reshaped version of t with dimension
          [batch_size, beam_width, s] if t's first dimension is of size
          batch_size*beam_width or t if not.
        Raises:
          TypeError: If t is an instance of TensorArray.
          ValueError: If the rank of t is not statically known.
        """
        _check_maybe(t)
        if t.shape.ndims >= 1:
            return self._split_batch_beams(t, s)
        else:
            return t 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:21,代碼來源:beam_search_decoder_from_tensorflow.py

示例8: _maybe_merge_batch_beams

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def _maybe_merge_batch_beams(self, t, s):
        """Splits the tensor from a batch by beams into a batch of beams.
        More exactly, t is a tensor of dimension [batch_size*beam_width, s]. We
        reshape this into [batch_size, beam_width, s]
        Args:
          t: Tensor of dimension [batch_size*beam_width, s]
          s: Tensor, Python int, or TensorShape.
        Returns:
          A reshaped version of t with dimension [batch_size, beam_width, s].
        Raises:
          TypeError: If t is an instance of TensorArray.
          ValueError:  If the rank of t is not statically known.
        """
        _check_maybe(t)
        if t.shape.ndims >= 2:
            return self._merge_batch_beams(t, s)
        else:
            return t 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:20,代碼來源:beam_search_decoder_from_tensorflow.py

示例9: __call__

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def __call__(self, getter, *args, **kwargs):
    size = tf.TensorShape(kwargs['shape']).num_elements()
    if size < self.small_variable_size_threshold:
      device_name = self.device_for_small_variables
    else:
      device_index, _ = min(enumerate(self.sizes), key=operator.itemgetter(1))
      device_name = self.devices[device_index]
      self.sizes[device_index] += size

    kwargs['caching_device'] = device_name
    var = getter(*args, **kwargs)
    return var


# To be used with custom_getter on tf.get_variable. Ensures the created variable
# is in LOCAL_VARIABLES and not GLOBAL_VARIBLES collection. 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:18,代碼來源:variable_mgr_util.py

示例10: __init__

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def __init__(self, dtype, shape, accumulator_ref):
    """Creates a new ConditionalAccumulator.

    Args:
      dtype: Datatype of the accumulated gradients.
      shape: Shape of the accumulated gradients.
      accumulator_ref: A handle to the conditional accumulator, created by sub-
        classes
    """
    self._dtype = dtype
    if shape is not None:
      self._shape = tensor_shape.TensorShape(shape)
    else:
      self._shape = tensor_shape.unknown_shape()
    self._accumulator_ref = accumulator_ref
    self._name = self._accumulator_ref.op.name.split("/")[-1] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:data_flow_ops.py

示例11: zero_state

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def zero_state(self, batch_size, dtype):
    """Return zero-filled state tensor(s).

    Args:
      batch_size: int, float, or unit Tensor representing the batch size.
      dtype: the data type to use for the state.

    Returns:
      If `state_size` is an int or TensorShape, then the return value is a
      `N-D` tensor of shape `[batch_size x state_size]` filled with zeros.

      If `state_size` is a nested list or tuple, then the return value is
      a nested list or tuple (of the same structure) of `2-D` tensors with
      the shapes `[batch_size x s]` for each s in `state_size`.
    """
    with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
      state_size = self.state_size
      return _zero_state_tensors(state_size, batch_size, dtype) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:rnn_cell_impl.py

示例12: _TileGradShape

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def _TileGradShape(op):
  """Shape function for the TileGrad op."""
  multiples_shape = op.inputs[1].get_shape().with_rank(1)
  input_shape = op.inputs[0].get_shape().with_rank(multiples_shape[0])
  # NOTE(mrry): Represent `multiples` as a `TensorShape` because (i)
  # it is a vector of non-negative integers, and (ii) doing so allows
  # us to handle partially-known multiples.
  multiples = tensor_util.constant_value_as_shape(op.inputs[1]).with_rank(
      input_shape.ndims)
  if multiples.ndims is None:
    return [tensor_shape.unknown_shape()]
  else:
    output_dims = []
    for dim, multiple in zip(input_shape.dims, multiples.dims):
      output_dims.append(dim // multiple)
    return [tensor_shape.TensorShape(output_dims)] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:array_ops.py

示例13: _merge_element_shape

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def _merge_element_shape(self, shape):
    """Changes the element shape of the array given a shape to merge with.

    Args:
      shape: A `TensorShape` object to merge with.

    Raises:
      ValueError: if the provided shape is incompatible with the current
          element shape of the `TensorArray`.
    """

    if self._element_shape:
      if not shape.is_compatible_with(self._element_shape[0]):
        raise ValueError(
            "Inconsistent shapes: saw %s but expected %s "
            "(and infer_shape=True)" % (shape, self._element_shape[0]))
      self._element_shape[0] = self._element_shape[0].merge_with(shape)
    else:
      self._element_shape.append(shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:tensor_array_ops.py

示例14: _GatherGrad

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def _GatherGrad(op, grad):
  """Gradient for gather op."""
  # Build appropriately shaped IndexedSlices
  # Walk graph back until the original handle is found.
  # TODO(apassos): more robust way of getting the shape.
  handle = op.inputs[0]
  while handle.op.type != "VarHandleOp":
    handle = handle.op.inputs[0]
  params_shape = ops.convert_to_tensor(
      tensor_shape.TensorShape(handle.op.get_attr("shape")))
  indices = op.inputs[1]
  size = array_ops.expand_dims(array_ops.size(indices), 0)
  values_shape = array_ops.concat([size, params_shape[1:]], 0)
  values = array_ops.reshape(grad, values_shape)
  indices = array_ops.reshape(indices, size)
  return [ops.IndexedSlices(values, indices, params_shape), None] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:resource_variable_ops.py

示例15: build

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import TensorShape [as 別名]
def build(self, input_shape):
    input_shape = tensor_shape.TensorShape(input_shape)
    if input_shape[-1].value is None:
      raise ValueError('The last dimension of the inputs to `Dense` '
                       'should be defined. Found `None`.')
    self.input_spec = base.InputSpec(min_ndim=2,
                                     axes={-1: input_shape[-1].value})
    self.kernel = self.add_variable('kernel',
                                    shape=[input_shape[-1].value, self.units],
                                    initializer=self.kernel_initializer,
                                    regularizer=self.kernel_regularizer,
                                    dtype=self.dtype,
                                    trainable=True)
    if self.use_bias:
      self.bias = self.add_variable('bias',
                                    shape=[self.units,],
                                    initializer=self.bias_initializer,
                                    regularizer=self.bias_regularizer,
                                    dtype=self.dtype,
                                    trainable=True)
    else:
      self.bias = None
    self.built = True 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:core.py


注:本文中的tensorflow.python.framework.tensor_shape.TensorShape方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。