本文整理匯總了Python中tensorflow.python.framework.tensor_shape.Dimension方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor_shape.Dimension方法的具體用法?Python tensor_shape.Dimension怎麽用?Python tensor_shape.Dimension使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.tensor_shape
的用法示例。
在下文中一共展示了tensor_shape.Dimension方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testUnknownDimension
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def testUnknownDimension(self):
dim = tensor_shape.Dimension(None)
self.assertIs(None, dim.value)
self.assertEqual(dim.value, tensor_shape.Dimension(None).value)
self.assertEqual(tensor_shape.Dimension(None).value,
(dim + tensor_shape.Dimension(None)).value)
self.assertEqual(tensor_shape.Dimension(None).value,
(dim * tensor_shape.Dimension(None)).value)
self.assertEqual(
tensor_shape.Dimension(None).value,
(dim // tensor_shape.Dimension(None)).value)
self.assertEqual(tensor_shape.Dimension(None).value,
dim.merge_with(tensor_shape.Dimension(None)).value)
self.assertIs(None,
tensor_shape.Dimension(None) < tensor_shape.Dimension(None))
self.assertIs(None,
tensor_shape.Dimension(None) <= tensor_shape.Dimension(None))
self.assertIs(None,
tensor_shape.Dimension(None) > tensor_shape.Dimension(None))
self.assertIs(None,
tensor_shape.Dimension(None) >= tensor_shape.Dimension(None))
示例2: testEquality
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def testEquality(self):
self.assertTrue(tensor_shape.Dimension(12) == tensor_shape.Dimension(12))
self.assertFalse(tensor_shape.Dimension(12) == tensor_shape.Dimension(13))
self.assertIs(None,
tensor_shape.Dimension(12) == tensor_shape.Dimension(None))
self.assertIs(None,
tensor_shape.Dimension(None) == tensor_shape.Dimension(12))
self.assertIs(None,
tensor_shape.Dimension(None) == tensor_shape.Dimension(None))
self.assertTrue(tensor_shape.Dimension(12) == "12")
self.assertTrue(tensor_shape.Dimension(12) == 24.0 / 2)
# None indicates ambiguous comparison, but comparison vs the wrong type
# is unambigously False.
self.assertIsNotNone(tensor_shape.Dimension(12) == "_")
self.assertIsNotNone(tensor_shape.Dimension(None) == 12.99)
self.assertFalse(tensor_shape.Dimension(12) == "_")
self.assertFalse(tensor_shape.Dimension(None) == 12.99)
self.assertIs(None, tensor_shape.Dimension(None) == "13")
self.assertIs(None, tensor_shape.Dimension(None) == None) # pylint: disable=g-equals-none
self.assertFalse(tensor_shape.Dimension(12) == 12.99)
示例3: testInequality
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def testInequality(self):
self.assertTrue(tensor_shape.Dimension(12) != tensor_shape.Dimension(13))
self.assertFalse(tensor_shape.Dimension(12) != tensor_shape.Dimension(12))
self.assertIs(None,
tensor_shape.Dimension(12) != tensor_shape.Dimension(None))
self.assertIs(None,
tensor_shape.Dimension(None) != tensor_shape.Dimension(12))
self.assertIs(None,
tensor_shape.Dimension(None) != tensor_shape.Dimension(None))
# None indicates ambiguous comparison, but comparison vs the wrong type
# is unambigously False.
self.assertIsNotNone(tensor_shape.Dimension(12) != "_")
self.assertIsNotNone(tensor_shape.Dimension(None) != 12.99)
self.assertTrue(tensor_shape.Dimension(12) != "_")
self.assertTrue(tensor_shape.Dimension(None) != 12.99)
self.assertIs(None, tensor_shape.Dimension(None) != "13")
self.assertIs(None, tensor_shape.Dimension(None) != None) # pylint: disable=g-equals-none
self.assertTrue(tensor_shape.Dimension(12) != 12.99)
示例4: testFullyDefinedShape
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def testFullyDefinedShape(self):
s = tensor_shape.TensorShape([tensor_shape.Dimension(
3), tensor_shape.Dimension(4), tensor_shape.Dimension(7)])
s.assert_is_fully_defined()
self.assertEqual(3, s.ndims)
self.assertEqual(3, len(s))
self.assertTrue(s)
s.assert_has_rank(3)
self.assertEqual([tensor_shape.Dimension(3),
tensor_shape.Dimension(4),
tensor_shape.Dimension(7)], s.dims)
self.assertEqual(tensor_shape.Dimension(3), s[0])
self.assertEqual(tensor_shape.Dimension(4), s[1])
self.assertEqual(tensor_shape.Dimension(7), s[2])
self.assertEqual([3, 4, 7], s.as_list())
s.assert_is_compatible_with([3, 4, 7])
s.assert_same_rank([6, 3, 7])
for d1, d2 in zip(s, [3, 4, 7]):
assert d1.value == d2
示例5: testConcatenate
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def testConcatenate(self):
tensor_shape.TensorShape([1, 2, 3, 4]).assert_is_compatible_with(
tensor_shape.TensorShape([1, 2]).concatenate(
tensor_shape.TensorShape([3, 4])))
tensor_shape.TensorShape([1, 2, 3, 4]).assert_is_compatible_with(
tensor_shape.TensorShape([1, 2]).concatenate(
tensor_shape.TensorShape(None)))
tensor_shape.TensorShape([1, 2, 3, 4]).assert_is_compatible_with(
tensor_shape.TensorShape(None).concatenate(
tensor_shape.TensorShape([3, 4])))
tensor_shape.TensorShape([1, 2, 3, 4]).assert_is_compatible_with(
tensor_shape.TensorShape(None).concatenate(
tensor_shape.TensorShape(None)))
tensor_shape.TensorShape([1, 2, 3]).assert_is_compatible_with(
tensor_shape.TensorShape([1, 2]).concatenate(
tensor_shape.Dimension(3)))
示例6: _dimension_tensor_conversion_function
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def _dimension_tensor_conversion_function(d,
dtype=None,
name=None,
as_ref=False):
"""Function to convert Dimension to Tensor."""
_ = as_ref
if d.value is None:
raise ValueError("Cannot convert an unknown Dimension to a Tensor: %s" % d)
if dtype is not None:
if dtype not in (dtypes.int32, dtypes.int64):
raise TypeError("Cannot convert a TensorShape to dtype: %s" % dtype)
else:
dtype = dtypes.int32
if name is None:
name = "shape_as_tensor"
return constant(d.value, dtype=dtype, name=name)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:18,代碼來源:constant_op.py
示例7: dequeue_many
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def dequeue_many(self, n, name=None):
"""Dequeues and concatenates `n` elements from this queue.
This operation concatenates queue-element component tensors along
the 0th dimension to make a single component tensor. All of the
components in the dequeued tuple will have size `n` in the 0th dimension.
If the queue is closed and there are less than `n` elements left, then an
`OutOfRange` exception is raised.
At runtime, this operation may raise an error if the queue is
@{tf.QueueBase.close} before or during its execution. If the
queue is closed, the queue contains fewer than `n` elements, and
there are no pending enqueue operations that can fulfill this
request, `tf.errors.OutOfRangeError` will be raised. If the
session is @{tf.Session.close},
`tf.errors.CancelledError` will be raised.
Args:
n: A scalar `Tensor` containing the number of elements to dequeue.
name: A name for the operation (optional).
Returns:
The tuple of concatenated tensors that was dequeued.
"""
if name is None:
name = "%s_DequeueMany" % self._name
ret = gen_data_flow_ops._queue_dequeue_many_v2(
self._queue_ref, n=n, component_types=self._dtypes, name=name)
# NOTE(mrry): Not using a shape function because we need access to
# the Queue object.
op = ret[0].op
batch_dim = tensor_shape.Dimension(tensor_util.constant_value(op.inputs[1]))
for output, shape in zip(op.values(), self._shapes):
output.set_shape(tensor_shape.TensorShape([batch_dim]).concatenate(shape))
return self._dequeue_return_value(ret)
示例8: _dimension_tensor_conversion_function
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def _dimension_tensor_conversion_function(d, dtype=None, name=None,
as_ref=False):
_ = as_ref
if d.value is None:
raise ValueError("Cannot convert an unknown Dimension to a Tensor: %s" % d)
if dtype is not None:
if dtype not in (dtypes.int32, dtypes.int64):
raise TypeError("Cannot convert a TensorShape to dtype: %s" % dtype)
else:
dtype = dtypes.int32
if name is None:
name = "shape_as_tensor"
return constant(d.value, dtype=dtype, name=name)
示例9: padded_batch
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def padded_batch(self, batch_size, padded_shapes, padding_values=None):
"""Combines consecutive elements of this dataset into padded batches.
Like `Dataset.dense_to_sparse_batch()`, this method combines
multiple consecutive elements of this dataset, which might have
different shapes, into a single element. The tensors in the
resulting element have an additional outer dimension, and are
padded to the respective shape in `padded_shapes`.
Args:
batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of
consecutive elements of this dataset to combine in a single batch.
padded_shapes: A nested structure of `tf.TensorShape` or
`tf.int64` vector tensor-like objects representing the shape
to which the respective component of each input element should
be padded prior to batching. Any unknown dimensions
(e.g. `tf.Dimension(None)` in a `tf.TensorShape` or `-1` in a
tensor-like object) will be padded to the maximum size of that
dimension in each batch.
padding_values: (Optional.) A nested structure of scalar-shaped
`tf.Tensor`, representing the padding values to use for the
respective components. Defaults are `0` for numeric types and
the empty string for string types.
Returns:
A `Dataset`.
"""
return PaddedBatchDataset(self, batch_size, padded_shapes, padding_values)
示例10: output_shapes
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def output_shapes(self):
num_elements = tensor_shape.Dimension(None)
return (tensor_shape.matrix(num_elements, self._row_shape.shape[0] + 1),
tensor_shape.vector(num_elements),
tensor_shape.vector(self._row_shape.shape[0] + 1))
示例11: _most_specific_compatible_shape
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def _most_specific_compatible_shape(s1, s2):
"""Returns the most specific shape compatible with `s1` and `s2`."""
if s1.dims is None:
return s1
if s2.dims is None:
return s2
s1.assert_same_rank(s2)
dims = []
for dim1, dim2 in zip(s1, s2):
if dim1.value is None or dim2.value is None or dim1.value != dim2.value:
dims.append(tensor_shape.Dimension(None))
else:
dims.append(dim1.value)
return tensor_shape.TensorShape(dims)
示例12: __init__
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def __init__(self, name, value):
"""Construct an Axis.
Args:
name: Name of the axis.
value: Either None, an int or tf.Dimension giving the size of the axis,
or a sequence that is not a string additionally providing coordinate
(tick) labels.
Raises:
ValueError: If the user provides labels with duplicate values.
"""
if isinstance(value, tensor_shape.Dimension):
dimension = value
labels = None
elif isinstance(value, int) or value is None:
dimension = tensor_shape.Dimension(value)
labels = None
else:
dimension = tensor_shape.Dimension(len(value))
labels = tuple(value)
if dimension.value == 0:
# Treat a zero-length axis as if it has labels.
labels = ()
if labels is not None:
index = dict(zip(labels, range(len(labels))))
if len(index) != len(labels):
raise ValueError('Tick labels must be unique, but got {}'
.format(labels))
else:
index = None
self._name = name # type: string_types
self._dimension = dimension # type: tensor_shape.Dimension
self._labels = labels # type: Optional[tuple]
self._index = index # type: Optional[Dict[Any, int]]
示例13: __repr__
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def __repr__(self):
# Axis('x', Dimension(2))
# TODO(shoyer): make very long reprs more succint?
return "%s('%s', %r)" % (type(self).__name__, self.name, self.value)
示例14: value
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def value(self):
"""Returns the tf.Dimension or tuple specifying axis ticks."""
if self.labels is None:
return self.dimension
else:
return self.labels
示例15: dequeue_many
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import Dimension [as 別名]
def dequeue_many(self, n, name=None):
"""Dequeues and concatenates `n` elements from this queue.
This operation concatenates queue-element component tensors along
the 0th dimension to make a single component tensor. All of the
components in the dequeued tuple will have size `n` in the 0th dimension.
If the queue is closed and there are less than `n` elements left, then an
`OutOfRange` exception is raised.
At runtime, this operation may raise an error if the queue is
[closed](#QueueBase.close) before or during its execution. If the
queue is closed, the queue contains fewer than `n` elements, and
there are no pending enqueue operations that can fulfill this
request, `tf.errors.OutOfRangeError` will be raised. If the
session is [closed](../../api_docs/python/client.md#Session.close),
`tf.errors.CancelledError` will be raised.
Args:
n: A scalar `Tensor` containing the number of elements to dequeue.
name: A name for the operation (optional).
Returns:
The tuple of concatenated tensors that was dequeued.
"""
if name is None:
name = "%s_DequeueMany" % self._name
ret = gen_data_flow_ops._queue_dequeue_many_v2(
self._queue_ref, n=n, component_types=self._dtypes, name=name)
# NOTE(mrry): Not using a shape function because we need access to
# the Queue object.
op = ret[0].op
batch_dim = tensor_shape.Dimension(tensor_util.constant_value(op.inputs[1]))
for output, shape in zip(op.values(), self._shapes):
output.set_shape(tensor_shape.TensorShape([batch_dim]).concatenate(shape))
return self._dequeue_return_value(ret)