本文整理匯總了Python中tensorflow.python.framework.ops.reset_default_graph方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.reset_default_graph方法的具體用法?Python ops.reset_default_graph怎麽用?Python ops.reset_default_graph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.ops
的用法示例。
在下文中一共展示了ops.reset_default_graph方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testClearDevices
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def testClearDevices(self):
export_dir = os.path.join(test.get_temp_dir(), "test_clear_devices")
builder = saved_model_builder.SavedModelBuilder(export_dir)
# Specify a device and save a variable.
ops.reset_default_graph()
with session.Session(
target="",
config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess:
with sess.graph.device("/cpu:0"):
self._init_and_validate_variable(sess, "v", 42)
builder.add_meta_graph_and_variables(
sess, [tag_constants.TRAINING], clear_devices=True)
# Save the SavedModel to disk.
builder.save()
# Restore the graph with a single predefined tag whose variables were saved
# without any device information.
with self.test_session(graph=ops.Graph()) as sess:
loader.load(sess, [tag_constants.TRAINING], export_dir)
self.assertEqual(
42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval())
示例2: testUnknownImageShape
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def testUnknownImageShape(self):
ops.reset_default_graph()
batch_size = 2
height, width = 224, 224
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.test_session() as sess:
inputs = array_ops.placeholder(
dtypes.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception_v2.inception_v2(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_5c']
feed_dict = {inputs: input_np}
variables.global_variables_initializer().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
示例3: testUnknownImageShape
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def testUnknownImageShape(self):
ops.reset_default_graph()
batch_size = 2
height, width = 299, 299
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.test_session() as sess:
inputs = array_ops.placeholder(
dtypes.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception_v3.inception_v3(inputs, num_classes)
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_7c']
feed_dict = {inputs: input_np}
variables.global_variables_initializer().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048])
示例4: testUnknownImageShape
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def testUnknownImageShape(self):
ops.reset_default_graph()
batch_size = 2
height, width = 224, 224
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.test_session() as sess:
inputs = array_ops.placeholder(
dtypes.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception_v1.inception_v1(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_5c']
feed_dict = {inputs: input_np}
variables.global_variables_initializer().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
示例5: testLegacyBasic
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def testLegacyBasic(self):
base_path = test.test_src_dir_path(SESSION_BUNDLE_PATH)
ops.reset_default_graph()
sess, meta_graph_def = (
bundle_shim.load_session_bundle_or_saved_model_bundle_from_path(
base_path,
tags=[""],
target="",
config=config_pb2.ConfigProto(device_count={"CPU": 2})))
self.assertTrue(sess)
asset_path = os.path.join(base_path, constants.ASSETS_DIRECTORY)
with sess.as_default():
path1, path2 = sess.run(["filename1:0", "filename2:0"])
self.assertEqual(
compat.as_bytes(os.path.join(asset_path, "hello1.txt")), path1)
self.assertEqual(
compat.as_bytes(os.path.join(asset_path, "hello2.txt")), path2)
collection_def = meta_graph_def.collection_def
signatures_any = collection_def[constants.SIGNATURES_KEY].any_list.value
self.assertEqual(len(signatures_any), 1)
示例6: testSavedModelBasic
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def testSavedModelBasic(self):
base_path = test.test_src_dir_path(SAVED_MODEL_PATH)
ops.reset_default_graph()
sess, meta_graph_def = (
bundle_shim.load_session_bundle_or_saved_model_bundle_from_path(
base_path,
tags=[tag_constants.SERVING],
target="",
config=config_pb2.ConfigProto(device_count={"CPU": 2})))
self.assertTrue(sess)
# Check basic signature def property.
signature_def = meta_graph_def.signature_def
self.assertEqual(len(signature_def), 2)
self.assertEqual(
signature_def[signature_constants.REGRESS_METHOD_NAME].method_name,
signature_constants.REGRESS_METHOD_NAME)
signature = signature_def["tensorflow/serving/regress"]
asset_path = os.path.join(base_path, saved_model_constants.ASSETS_DIRECTORY)
with sess.as_default():
output1 = sess.run(["filename_tensor:0"])
self.assertEqual(["foo.txt"], output1)
示例7: testUnknownImageShape
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def testUnknownImageShape(self):
ops.reset_default_graph()
batch_size = 2
height, width = 224, 224
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.cached_session() as sess:
inputs = array_ops.placeholder(
dtypes.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception_v2.inception_v2(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_5c']
feed_dict = {inputs: input_np}
variables.global_variables_initializer().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
示例8: testUnknownImageShape
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def testUnknownImageShape(self):
ops.reset_default_graph()
batch_size = 2
height, width = 299, 299
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.cached_session() as sess:
inputs = array_ops.placeholder(
dtypes.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception_v3.inception_v3(inputs, num_classes)
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_7c']
feed_dict = {inputs: input_np}
variables.global_variables_initializer().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048])
示例9: testUnknownImageShape
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def testUnknownImageShape(self):
ops.reset_default_graph()
batch_size = 2
height, width = 224, 224
num_classes = 1000
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
with self.cached_session() as sess:
inputs = array_ops.placeholder(
dtypes.float32, shape=(batch_size, None, None, 3))
logits, end_points = inception_v1.inception_v1(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Mixed_5c']
feed_dict = {inputs: input_np}
variables.global_variables_initializer().run()
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
示例10: testCreateDropoutWithPlaceholder
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def testCreateDropoutWithPlaceholder(self):
height, width = 3, 3
tf.reset_default_graph()
with self.cached_session():
is_training = array_ops.placeholder(dtype=dtypes.bool, shape=[])
images = random_ops.random_uniform((5, height, width, 3), seed=1)
# this verifies that that we've inserted cond properly.
output = _layers.dropout(images, is_training=is_training)
# In control_flow_v2 the op is called "If" and it is behind
# identity op. In legacy mode cond we just go by name.
# Might need to do something more robust here eventually.
is_cond_op = (output.op.inputs[0].op.type == 'If' or
output.op.name == 'Dropout/cond/Merge')
self.assertTrue(is_cond_op,
'Expected cond_op got ' + repr(output))
output.get_shape().assert_is_compatible_with(images.get_shape())
示例11: begin_session
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def begin_session(self):
"""
Begins the session
:return: None
"""
# start the tensorflow session
ops.reset_default_graph()
# initialize interactive session
self.sess = tf.Session()
示例12: tearDown
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def tearDown(self):
ops.reset_default_graph()
# Tear down temporary dump directory.
if os.path.isdir(self._dump_root):
shutil.rmtree(self._dump_root)
示例13: setUp
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def setUp(self):
self._ClearCachedSession()
random.seed(random_seed.DEFAULT_GRAPH_SEED)
np.random.seed(random_seed.DEFAULT_GRAPH_SEED)
ops.reset_default_graph()
ops.get_default_graph().seed = random_seed.DEFAULT_GRAPH_SEED
示例14: clear_session
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def clear_session():
"""Destroys the current TF graph and creates a new one.
Useful to avoid clutter from old models / layers.
"""
global _SESSION
global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned
ops.reset_default_graph()
reset_uids()
_SESSION = None
phase = array_ops.placeholder(dtype='bool', name='keras_learning_phase')
_GRAPH_LEARNING_PHASES = {}
_GRAPH_LEARNING_PHASES[ops.get_default_graph()] = phase
示例15: tearDown
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import reset_default_graph [as 別名]
def tearDown(self):
# Tear down temporary dump directory.
shutil.rmtree(self._dump_root)
ops.reset_default_graph()