本文整理匯總了Python中tensorflow.python.framework.ops.prepend_name_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.prepend_name_scope方法的具體用法?Python ops.prepend_name_scope怎麽用?Python ops.prepend_name_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.ops
的用法示例。
在下文中一共展示了ops.prepend_name_scope方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _init_values_from_proto
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_values_from_proto(self, values_def, import_scope=None):
"""Initializes values and external_values from `ValuesDef` protocol buffer.
Args:
values_def: `ValuesDef` protocol buffer.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(values_def, control_flow_pb2.ValuesDef)
self._values = set(values_def.values)
g = ops.get_default_graph()
self._external_values = {}
for k, v in values_def.external_values.items():
self._external_values[k] = g.as_graph_element(
ops.prepend_name_scope(v, import_scope))
op_names = set([op.split(":")[0]
for op in self._values - set(self._external_values)])
for op in op_names:
# pylint: disable=protected-access
g.as_graph_element(ops.prepend_name_scope(
op, import_scope))._set_control_flow_context(self)
# pylint: enable=protected-access
示例2: _init_from_proto
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_from_proto(self, context_def, import_scope=None):
"""Creates a new `CondContext` from protocol buffer.
Args:
context_def: `CondContextDef` protocol buffer.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(context_def, control_flow_pb2.CondContextDef)
# Create from context_def.
g = ops.get_default_graph()
self._name = ops.prepend_name_scope(
context_def.context_name, import_scope)
self._pred = g.as_graph_element(ops.prepend_name_scope(
context_def.pred_name, import_scope))
self._pivot = g.as_graph_element(ops.prepend_name_scope(
context_def.pivot_name, import_scope))
self._branch = context_def.branch
super(CondContext, self).__init__(values_def=context_def.values_def,
import_scope=import_scope)
示例3: _init_from_proto
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_from_proto(self, queue_runner_def, import_scope=None):
"""Create a QueueRunner from `QueueRunnerDef`.
Args:
queue_runner_def: Optional `QueueRunnerDef` protocol buffer.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(queue_runner_def, queue_runner_pb2.QueueRunnerDef)
g = ops.get_default_graph()
self._queue = g.as_graph_element(
ops.prepend_name_scope(queue_runner_def.queue_name, import_scope))
self._enqueue_ops = [g.as_graph_element(
ops.prepend_name_scope(op, import_scope))
for op in queue_runner_def.enqueue_op_name]
self._close_op = g.as_graph_element(ops.prepend_name_scope(
queue_runner_def.close_op_name, import_scope))
self._cancel_op = g.as_graph_element(ops.prepend_name_scope(
queue_runner_def.cancel_op_name, import_scope))
self._queue_closed_exception_types = tuple(
errors.exception_type_from_error_code(code)
for code in queue_runner_def.queue_closed_exception_types)
# Legacy support for old QueueRunnerDefs created before this field
# was added.
if not self._queue_closed_exception_types:
self._queue_closed_exception_types = (errors.OutOfRangeError,)
示例4: _init_from_proto
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_from_proto(self, variable_def, import_scope=None):
"""Creates a new variable from `VariableDef` protocol buffer.
Args:
variable_def: `VariableDef` protocol buffer.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(variable_def, variable_pb2.VariableDef)
# Create from variable_def.
g = ops.get_default_graph()
self._variable = g.as_graph_element(
ops.prepend_name_scope(variable_def.variable_name,
import_scope=import_scope))
self._initializer_op = g.as_graph_element(
ops.prepend_name_scope(variable_def.initializer_name,
import_scope=import_scope))
self._snapshot = g.as_graph_element(
ops.prepend_name_scope(variable_def.snapshot_name,
import_scope=import_scope))
if variable_def.HasField("save_slice_info_def"):
self._save_slice_info = Variable.SaveSliceInfo(
save_slice_info_def=variable_def.save_slice_info_def)
else:
self._save_slice_info = None
self._caching_device = None
示例5: _init_values_from_proto
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_values_from_proto(self, values_def, import_scope=None):
"""Initializes values and external_values from `ValuesDef` protocol buffer.
Args:
values_def: `ValuesDef` protocol buffer.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(values_def, control_flow_pb2.ValuesDef)
self._values = set(values_def.values)
g = ops.get_default_graph()
self._external_values = {}
for k, v in values_def.external_values.items():
self._external_values[k] = g.as_graph_element(v)
op_names = set([op.split(":")[0]
for op in self._values - set(self._external_values)])
for op in op_names:
# pylint: disable=protected-access
g.as_graph_element(ops.prepend_name_scope(
op, import_scope))._set_control_flow_context(self)
# pylint: enable=protected-access
示例6: testStripAndPrependScope
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def testStripAndPrependScope(self):
strs = ["hidden1/hidden1/weights", # Same prefix. Should strip.
"hidden1///hidden1/weights", # Extra "/". Should strip.
"^hidden1/hidden1/weights", # Same prefix. Should strip.
"loc:@hidden1/hidden1/weights", # Same prefix. Should strip.
"hhidden1/hidden1/weights", # Different prefix. Should keep.
"hidden1"] # Not a prefix. Should keep.
expected_striped = ["hidden1/weights",
"hidden1/weights",
"^hidden1/weights",
"loc:@hidden1/weights",
"hhidden1/hidden1/weights",
"hidden1"]
expected_prepended = ["hidden2/hidden1/weights",
"hidden2/hidden1/weights",
"^hidden2/hidden1/weights",
"loc:@hidden2/hidden1/weights",
"hidden2/hhidden1/hidden1/weights",
"hidden2/hidden1"]
name_scope_to_strip = "hidden1"
name_scope_to_add = "hidden2"
for es, ep, s in zip(expected_striped, expected_prepended, strs):
striped = ops.strip_name_scope(s, name_scope_to_strip)
self.assertEqual(es, striped)
self.assertEqual(ep, ops.prepend_name_scope(striped, name_scope_to_add))
示例7: _init_values_from_proto
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_values_from_proto(self, values_def, import_scope=None):
"""Initializes values and external_values from `ValuesDef` protocol buffer.
Args:
values_def: `ValuesDef` protocol buffer.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(values_def, control_flow_pb2.ValuesDef)
self._values = set(
ops.prepend_name_scope(value, import_scope)
for value in values_def.values)
g = ops.get_default_graph()
self._external_values = {}
for k, v in values_def.external_values.items():
k = ops.prepend_name_scope(k, import_scope)
self._external_values[k] = g.as_graph_element(
ops.prepend_name_scope(v, import_scope))
op_names = set([
op.split(":")[0]
for op in self._values - set(self._external_values.keys())
])
for op in op_names:
# pylint: disable=protected-access
g.as_graph_element(op)._set_control_flow_context(self)
# pylint: enable=protected-access
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:27,代碼來源:control_flow_ops.py
示例8: _init_from_proto
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_from_proto(self, variable_def, import_scope=None):
"""Recreates the Variable object from a `VariableDef` protocol buffer.
Args:
variable_def: `VariableDef` protocol buffer, describing a variable
whose nodes already exists in the graph.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(variable_def, variable_pb2.VariableDef)
# Create from variable_def.
g = ops.get_default_graph()
self._variable = g.as_graph_element(
ops.prepend_name_scope(variable_def.variable_name,
import_scope=import_scope))
self._initializer_op = g.as_graph_element(
ops.prepend_name_scope(variable_def.initializer_name,
import_scope=import_scope))
self._snapshot = g.as_graph_element(
ops.prepend_name_scope(variable_def.snapshot_name,
import_scope=import_scope))
if variable_def.HasField("save_slice_info_def"):
self._save_slice_info = Variable.SaveSliceInfo(
save_slice_info_def=variable_def.save_slice_info_def)
else:
self._save_slice_info = None
self._caching_device = None
示例9: __init__
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def __init__(self,
full_name=None,
full_shape=None,
var_offset=None,
var_shape=None,
save_slice_info_def=None,
import_scope=None):
"""Create a `SaveSliceInfo`.
Args:
full_name: Name of the full variable of which this `Variable` is a
slice.
full_shape: Shape of the full variable, as a list of int.
var_offset: Offset of this `Variable` into the full variable, as a
list of int.
var_shape: Shape of this `Variable`, as a list of int.
save_slice_info_def: `SaveSliceInfoDef` protocol buffer. If not `None`,
recreates the SaveSliceInfo object its contents.
`save_slice_info_def` and other arguments are mutually
exclusive.
import_scope: Optional `string`. Name scope to add. Only used
when initializing from protocol buffer.
"""
if save_slice_info_def:
assert isinstance(save_slice_info_def, variable_pb2.SaveSliceInfoDef)
self.full_name = ops.prepend_name_scope(
save_slice_info_def.full_name, import_scope=import_scope)
self.full_shape = [i for i in save_slice_info_def.full_shape]
self.var_offset = [i for i in save_slice_info_def.var_offset]
self.var_shape = [i for i in save_slice_info_def.var_shape]
else:
self.full_name = full_name
self.full_shape = full_shape
self.var_offset = var_offset
self.var_shape = var_shape
示例10: get_new_col_def_of_node_list
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def get_new_col_def_of_node_list(col_def, op_names_to_replicate, num_replicas):
new_col_def = meta_graph_pb2.CollectionDef()
for tensor_name in col_def.node_list.value:
if _get_op_name(tensor_name) in op_names_to_replicate:
new_col_def.node_list.value.extend(
[ops.prepend_name_scope(tensor_name, parallax_replica_prefix(i))
for i in range(num_replicas)])
else:
new_col_def.node_list.value.append(tensor_name)
return new_col_def
示例11: update_local_variables
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def update_local_variables(multi_gpu_meta_graph_def, op_names_to_replicate,
num_replicas):
def _get_new_var_def(var_def, prefix):
new_var_def = variable_pb2.VariableDef()
new_var_def.CopyFrom(var_def)
new_var_def.variable_name = \
ops.prepend_name_scope(var_def.variable_name, prefix)
new_var_def.initializer_name = \
ops.prepend_name_scope(var_def.initializer_name, prefix)
new_var_def.snapshot_name = \
ops.prepend_name_scope(var_def.snapshot_name, prefix)
return new_var_def
if tf.GraphKeys.LOCAL_VARIABLES not in multi_gpu_meta_graph_def.collection_def:
return
lv_collection = \
multi_gpu_meta_graph_def.collection_def[tf.GraphKeys.LOCAL_VARIABLES]
new_lv_col = meta_graph_pb2.CollectionDef()
for var_def_string in lv_collection.bytes_list.value:
var_def = variable_pb2.VariableDef()
var_def.ParseFromString(var_def_string)
if _get_op_name(var_def.variable_name) in op_names_to_replicate:
new_var_defs = \
[_get_new_var_def(var_def, parallax_replica_prefix(i))
for i in range(num_replicas)]
new_lv_col.bytes_list.value.extend(
[new_var_def.SerializeToString()
for new_var_def in new_var_defs])
else:
new_lv_col.bytes_list.value.append(var_def.SerializeToString())
multi_gpu_meta_graph_def.collection_def[tf.GraphKeys.LOCAL_VARIABLES]\
.Clear()
multi_gpu_meta_graph_def.collection_def[tf.GraphKeys.LOCAL_VARIABLES]\
.CopyFrom(new_lv_col)
if len(lv_collection.bytes_list.value) == 0:
del multi_gpu_meta_graph_def\
.collection_def[tf.GraphKeys.LOCAL_VARIABLES]
示例12: get_tensor_from_tensor_info
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def get_tensor_from_tensor_info(tensor_info, graph=None, import_scope=None):
"""Returns the Tensor or SparseTensor described by a TensorInfo proto.
Args:
tensor_info: A TensorInfo proto describing a Tensor or SparseTensor.
graph: The tf.Graph in which tensors are looked up. If None, the
current default graph is used.
import_scope: If not None, names in `tensor_info` are prefixed with this
string before lookup.
Returns:
The Tensor or SparseTensor in `graph` described by `tensor_info`.
Raises:
KeyError: If `tensor_info` does not correspond to a tensor in `graph`.
ValueError: If `tensor_info` is malformed.
"""
graph = graph if graph is not None else ops.get_default_graph()
def _get_tensor(name):
return graph.get_tensor_by_name(
ops.prepend_name_scope(name, import_scope=import_scope))
encoding = tensor_info.WhichOneof("encoding")
if encoding == "name":
return _get_tensor(tensor_info.name)
elif encoding == "coo_sparse":
return sparse_tensor.SparseTensor(
_get_tensor(tensor_info.coo_sparse.indices_tensor_name),
_get_tensor(tensor_info.coo_sparse.values_tensor_name),
_get_tensor(tensor_info.coo_sparse.dense_shape_tensor_name))
else:
raise ValueError("Invalid TensorInfo.encoding: %s" % encoding)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:33,代碼來源:utils_impl.py
示例13: _init_from_proto
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_from_proto(self, variable_def, import_scope=None):
"""Recreates the Variable object from a `VariableDef` protocol buffer.
Args:
variable_def: `VariableDef` protocol buffer, describing a variable
whose nodes already exists in the graph.
import_scope: Optional `string`. Name scope to add.
"""
assert isinstance(variable_def, variable_pb2.VariableDef)
# Create from variable_def.
g = ops.get_default_graph()
self._variable = g.as_graph_element(
ops.prepend_name_scope(variable_def.variable_name,
import_scope=import_scope))
self._initializer_op = g.as_graph_element(
ops.prepend_name_scope(variable_def.initializer_name,
import_scope=import_scope))
# Tests whether initial_value_name exists first for backwards compatibility.
if (hasattr(variable_def, "initial_value_name") and
variable_def.initial_value_name):
self._initial_value = g.as_graph_element(
ops.prepend_name_scope(variable_def.initial_value_name,
import_scope=import_scope))
else:
self._initial_value = None
self._snapshot = g.as_graph_element(
ops.prepend_name_scope(variable_def.snapshot_name,
import_scope=import_scope))
if variable_def.HasField("save_slice_info_def"):
self._save_slice_info = Variable.SaveSliceInfo(
save_slice_info_def=variable_def.save_slice_info_def)
else:
self._save_slice_info = None
self._caching_device = None
self._constraint = None
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:37,代碼來源:variables.py