當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.prepend_name_scope方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.ops.prepend_name_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.prepend_name_scope方法的具體用法?Python ops.prepend_name_scope怎麽用?Python ops.prepend_name_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops.prepend_name_scope方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _init_values_from_proto

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_values_from_proto(self, values_def, import_scope=None):
    """Initializes values and external_values from `ValuesDef` protocol buffer.

    Args:
      values_def: `ValuesDef` protocol buffer.
      import_scope: Optional `string`. Name scope to add.
    """
    assert isinstance(values_def, control_flow_pb2.ValuesDef)
    self._values = set(values_def.values)
    g = ops.get_default_graph()
    self._external_values = {}
    for k, v in values_def.external_values.items():
      self._external_values[k] = g.as_graph_element(
          ops.prepend_name_scope(v, import_scope))
    op_names = set([op.split(":")[0]
                    for op in self._values - set(self._external_values)])
    for op in op_names:
      # pylint: disable=protected-access
      g.as_graph_element(ops.prepend_name_scope(
          op, import_scope))._set_control_flow_context(self)
      # pylint: enable=protected-access 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:control_flow_ops.py

示例2: _init_from_proto

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_from_proto(self, context_def, import_scope=None):
    """Creates a new `CondContext` from protocol buffer.

    Args:
      context_def: `CondContextDef` protocol buffer.
      import_scope: Optional `string`. Name scope to add.
    """
    assert isinstance(context_def, control_flow_pb2.CondContextDef)
    # Create from context_def.
    g = ops.get_default_graph()
    self._name = ops.prepend_name_scope(
        context_def.context_name, import_scope)
    self._pred = g.as_graph_element(ops.prepend_name_scope(
        context_def.pred_name, import_scope))
    self._pivot = g.as_graph_element(ops.prepend_name_scope(
        context_def.pivot_name, import_scope))
    self._branch = context_def.branch
    super(CondContext, self).__init__(values_def=context_def.values_def,
                                      import_scope=import_scope) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:control_flow_ops.py

示例3: _init_from_proto

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_from_proto(self, queue_runner_def, import_scope=None):
    """Create a QueueRunner from `QueueRunnerDef`.

    Args:
      queue_runner_def: Optional `QueueRunnerDef` protocol buffer.
      import_scope: Optional `string`. Name scope to add.
    """
    assert isinstance(queue_runner_def, queue_runner_pb2.QueueRunnerDef)
    g = ops.get_default_graph()
    self._queue = g.as_graph_element(
        ops.prepend_name_scope(queue_runner_def.queue_name, import_scope))
    self._enqueue_ops = [g.as_graph_element(
        ops.prepend_name_scope(op, import_scope))
                         for op in queue_runner_def.enqueue_op_name]
    self._close_op = g.as_graph_element(ops.prepend_name_scope(
        queue_runner_def.close_op_name, import_scope))
    self._cancel_op = g.as_graph_element(ops.prepend_name_scope(
        queue_runner_def.cancel_op_name, import_scope))
    self._queue_closed_exception_types = tuple(
        errors.exception_type_from_error_code(code)
        for code in queue_runner_def.queue_closed_exception_types)
    # Legacy support for old QueueRunnerDefs created before this field
    # was added.
    if not self._queue_closed_exception_types:
      self._queue_closed_exception_types = (errors.OutOfRangeError,) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:queue_runner_impl.py

示例4: _init_from_proto

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_from_proto(self, variable_def, import_scope=None):
    """Creates a new variable from `VariableDef` protocol buffer.

    Args:
      variable_def: `VariableDef` protocol buffer.
      import_scope: Optional `string`. Name scope to add.
    """
    assert isinstance(variable_def, variable_pb2.VariableDef)
    # Create from variable_def.
    g = ops.get_default_graph()
    self._variable = g.as_graph_element(
        ops.prepend_name_scope(variable_def.variable_name,
                               import_scope=import_scope))
    self._initializer_op = g.as_graph_element(
        ops.prepend_name_scope(variable_def.initializer_name,
                               import_scope=import_scope))
    self._snapshot = g.as_graph_element(
        ops.prepend_name_scope(variable_def.snapshot_name,
                               import_scope=import_scope))
    if variable_def.HasField("save_slice_info_def"):
      self._save_slice_info = Variable.SaveSliceInfo(
          save_slice_info_def=variable_def.save_slice_info_def)
    else:
      self._save_slice_info = None
    self._caching_device = None 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:27,代碼來源:variables.py

示例5: _init_values_from_proto

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_values_from_proto(self, values_def, import_scope=None):
    """Initializes values and external_values from `ValuesDef` protocol buffer.

    Args:
      values_def: `ValuesDef` protocol buffer.
      import_scope: Optional `string`. Name scope to add.
    """
    assert isinstance(values_def, control_flow_pb2.ValuesDef)
    self._values = set(values_def.values)
    g = ops.get_default_graph()
    self._external_values = {}
    for k, v in values_def.external_values.items():
      self._external_values[k] = g.as_graph_element(v)
    op_names = set([op.split(":")[0]
                    for op in self._values - set(self._external_values)])
    for op in op_names:
      # pylint: disable=protected-access
      g.as_graph_element(ops.prepend_name_scope(
          op, import_scope))._set_control_flow_context(self)
      # pylint: enable=protected-access 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:22,代碼來源:control_flow_ops.py

示例6: testStripAndPrependScope

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def testStripAndPrependScope(self):
    strs = ["hidden1/hidden1/weights",       # Same prefix. Should strip.
            "hidden1///hidden1/weights",     # Extra "/". Should strip.
            "^hidden1/hidden1/weights",      # Same prefix. Should strip.
            "loc:@hidden1/hidden1/weights",  # Same prefix. Should strip.
            "hhidden1/hidden1/weights",  # Different prefix. Should keep.
            "hidden1"]                   # Not a prefix. Should keep.
    expected_striped = ["hidden1/weights",
                        "hidden1/weights",
                        "^hidden1/weights",
                        "loc:@hidden1/weights",
                        "hhidden1/hidden1/weights",
                        "hidden1"]
    expected_prepended = ["hidden2/hidden1/weights",
                          "hidden2/hidden1/weights",
                          "^hidden2/hidden1/weights",
                          "loc:@hidden2/hidden1/weights",
                          "hidden2/hhidden1/hidden1/weights",
                          "hidden2/hidden1"]
    name_scope_to_strip = "hidden1"
    name_scope_to_add = "hidden2"
    for es, ep, s in zip(expected_striped, expected_prepended, strs):
      striped = ops.strip_name_scope(s, name_scope_to_strip)
      self.assertEqual(es, striped)
      self.assertEqual(ep, ops.prepend_name_scope(striped, name_scope_to_add)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:ops_test.py

示例7: _init_values_from_proto

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_values_from_proto(self, values_def, import_scope=None):
    """Initializes values and external_values from `ValuesDef` protocol buffer.

    Args:
      values_def: `ValuesDef` protocol buffer.
      import_scope: Optional `string`. Name scope to add.
    """
    assert isinstance(values_def, control_flow_pb2.ValuesDef)
    self._values = set(
        ops.prepend_name_scope(value, import_scope)
        for value in values_def.values)
    g = ops.get_default_graph()
    self._external_values = {}
    for k, v in values_def.external_values.items():
      k = ops.prepend_name_scope(k, import_scope)
      self._external_values[k] = g.as_graph_element(
          ops.prepend_name_scope(v, import_scope))
    op_names = set([
        op.split(":")[0]
        for op in self._values - set(self._external_values.keys())
    ])
    for op in op_names:
      # pylint: disable=protected-access
      g.as_graph_element(op)._set_control_flow_context(self)
      # pylint: enable=protected-access 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:27,代碼來源:control_flow_ops.py

示例8: _init_from_proto

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_from_proto(self, variable_def, import_scope=None):
    """Recreates the Variable object from a `VariableDef` protocol buffer.

    Args:
      variable_def: `VariableDef` protocol buffer, describing a variable
          whose nodes already exists in the graph.
      import_scope: Optional `string`. Name scope to add.
    """
    assert isinstance(variable_def, variable_pb2.VariableDef)
    # Create from variable_def.
    g = ops.get_default_graph()
    self._variable = g.as_graph_element(
        ops.prepend_name_scope(variable_def.variable_name,
                               import_scope=import_scope))
    self._initializer_op = g.as_graph_element(
        ops.prepend_name_scope(variable_def.initializer_name,
                               import_scope=import_scope))
    self._snapshot = g.as_graph_element(
        ops.prepend_name_scope(variable_def.snapshot_name,
                               import_scope=import_scope))
    if variable_def.HasField("save_slice_info_def"):
      self._save_slice_info = Variable.SaveSliceInfo(
          save_slice_info_def=variable_def.save_slice_info_def)
    else:
      self._save_slice_info = None
    self._caching_device = None 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:28,代碼來源:variables.py

示例9: __init__

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def __init__(self,
                 full_name=None,
                 full_shape=None,
                 var_offset=None,
                 var_shape=None,
                 save_slice_info_def=None,
                 import_scope=None):
      """Create a `SaveSliceInfo`.

      Args:
        full_name: Name of the full variable of which this `Variable` is a
            slice.
        full_shape: Shape of the full variable, as a list of int.
        var_offset: Offset of this `Variable` into the full variable, as a
            list of int.
        var_shape: Shape of this `Variable`, as a list of int.
        save_slice_info_def: `SaveSliceInfoDef` protocol buffer. If not `None`,
          recreates the SaveSliceInfo object its contents.
          `save_slice_info_def` and other arguments are mutually
          exclusive.
        import_scope: Optional `string`. Name scope to add. Only used
          when initializing from protocol buffer.
      """
      if save_slice_info_def:
        assert isinstance(save_slice_info_def, variable_pb2.SaveSliceInfoDef)
        self.full_name = ops.prepend_name_scope(
            save_slice_info_def.full_name, import_scope=import_scope)
        self.full_shape = [i for i in save_slice_info_def.full_shape]
        self.var_offset = [i for i in save_slice_info_def.var_offset]
        self.var_shape = [i for i in save_slice_info_def.var_shape]
      else:
        self.full_name = full_name
        self.full_shape = full_shape
        self.var_offset = var_offset
        self.var_shape = var_shape 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:37,代碼來源:variables.py

示例10: get_new_col_def_of_node_list

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def get_new_col_def_of_node_list(col_def, op_names_to_replicate, num_replicas):
    new_col_def = meta_graph_pb2.CollectionDef()
    for tensor_name in col_def.node_list.value:
        if _get_op_name(tensor_name) in op_names_to_replicate:
            new_col_def.node_list.value.extend(
                [ops.prepend_name_scope(tensor_name, parallax_replica_prefix(i))
                 for i in range(num_replicas)])
        else:
            new_col_def.node_list.value.append(tensor_name)
    return new_col_def 
開發者ID:snuspl,項目名稱:parallax,代碼行數:12,代碼來源:graph_transform_lib.py

示例11: update_local_variables

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def update_local_variables(multi_gpu_meta_graph_def, op_names_to_replicate,
                            num_replicas):
    def _get_new_var_def(var_def, prefix):
        new_var_def = variable_pb2.VariableDef()
        new_var_def.CopyFrom(var_def)
        new_var_def.variable_name = \
            ops.prepend_name_scope(var_def.variable_name, prefix)
        new_var_def.initializer_name = \
            ops.prepend_name_scope(var_def.initializer_name, prefix)
        new_var_def.snapshot_name = \
            ops.prepend_name_scope(var_def.snapshot_name, prefix)
        return new_var_def

    if tf.GraphKeys.LOCAL_VARIABLES not in multi_gpu_meta_graph_def.collection_def:
        return

    lv_collection = \
        multi_gpu_meta_graph_def.collection_def[tf.GraphKeys.LOCAL_VARIABLES]
    new_lv_col = meta_graph_pb2.CollectionDef()
    for var_def_string in lv_collection.bytes_list.value:
        var_def = variable_pb2.VariableDef()
        var_def.ParseFromString(var_def_string)
        if _get_op_name(var_def.variable_name) in op_names_to_replicate:
            new_var_defs = \
                [_get_new_var_def(var_def, parallax_replica_prefix(i))
                 for i in range(num_replicas)]
            new_lv_col.bytes_list.value.extend(
                [new_var_def.SerializeToString()
                 for new_var_def in new_var_defs])
        else:
            new_lv_col.bytes_list.value.append(var_def.SerializeToString())
    multi_gpu_meta_graph_def.collection_def[tf.GraphKeys.LOCAL_VARIABLES]\
        .Clear()
    multi_gpu_meta_graph_def.collection_def[tf.GraphKeys.LOCAL_VARIABLES]\
        .CopyFrom(new_lv_col)
    if len(lv_collection.bytes_list.value) == 0:
        del multi_gpu_meta_graph_def\
            .collection_def[tf.GraphKeys.LOCAL_VARIABLES] 
開發者ID:snuspl,項目名稱:parallax,代碼行數:40,代碼來源:graph_transform_lib.py

示例12: get_tensor_from_tensor_info

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def get_tensor_from_tensor_info(tensor_info, graph=None, import_scope=None):
  """Returns the Tensor or SparseTensor described by a TensorInfo proto.

  Args:
    tensor_info: A TensorInfo proto describing a Tensor or SparseTensor.
    graph: The tf.Graph in which tensors are looked up. If None, the
        current default graph is used.
    import_scope: If not None, names in `tensor_info` are prefixed with this
        string before lookup.

  Returns:
    The Tensor or SparseTensor in `graph` described by `tensor_info`.

  Raises:
    KeyError: If `tensor_info` does not correspond to a tensor in `graph`.
    ValueError: If `tensor_info` is malformed.
  """
  graph = graph if graph is not None else ops.get_default_graph()
  def _get_tensor(name):
    return graph.get_tensor_by_name(
        ops.prepend_name_scope(name, import_scope=import_scope))
  encoding = tensor_info.WhichOneof("encoding")
  if encoding == "name":
    return _get_tensor(tensor_info.name)
  elif encoding == "coo_sparse":
    return sparse_tensor.SparseTensor(
        _get_tensor(tensor_info.coo_sparse.indices_tensor_name),
        _get_tensor(tensor_info.coo_sparse.values_tensor_name),
        _get_tensor(tensor_info.coo_sparse.dense_shape_tensor_name))
  else:
    raise ValueError("Invalid TensorInfo.encoding: %s" % encoding) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:33,代碼來源:utils_impl.py

示例13: _init_from_proto

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import prepend_name_scope [as 別名]
def _init_from_proto(self, variable_def, import_scope=None):
    """Recreates the Variable object from a `VariableDef` protocol buffer.

    Args:
      variable_def: `VariableDef` protocol buffer, describing a variable
          whose nodes already exists in the graph.
      import_scope: Optional `string`. Name scope to add.
    """
    assert isinstance(variable_def, variable_pb2.VariableDef)
    # Create from variable_def.
    g = ops.get_default_graph()
    self._variable = g.as_graph_element(
        ops.prepend_name_scope(variable_def.variable_name,
                               import_scope=import_scope))
    self._initializer_op = g.as_graph_element(
        ops.prepend_name_scope(variable_def.initializer_name,
                               import_scope=import_scope))
    # Tests whether initial_value_name exists first for backwards compatibility.
    if (hasattr(variable_def, "initial_value_name") and
        variable_def.initial_value_name):
      self._initial_value = g.as_graph_element(
          ops.prepend_name_scope(variable_def.initial_value_name,
                                 import_scope=import_scope))
    else:
      self._initial_value = None
    self._snapshot = g.as_graph_element(
        ops.prepend_name_scope(variable_def.snapshot_name,
                               import_scope=import_scope))
    if variable_def.HasField("save_slice_info_def"):
      self._save_slice_info = Variable.SaveSliceInfo(
          save_slice_info_def=variable_def.save_slice_info_def)
    else:
      self._save_slice_info = None
    self._caching_device = None
    self._constraint = None 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:37,代碼來源:variables.py


注:本文中的tensorflow.python.framework.ops.prepend_name_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。