當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.op_scope方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.ops.op_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.op_scope方法的具體用法?Python ops.op_scope怎麽用?Python ops.op_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops.op_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: binary_cross_entropy

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def binary_cross_entropy(preds, targets, name=None):
    """Computes binary cross entropy given `preds`.

    For brevity, let `x = `, `z = targets`.  The logistic loss is

        loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))

    Args:
        preds: A `Tensor` of type `float32` or `float64`.
        targets: A `Tensor` of the same type and shape as `preds`.
    """
    eps = 1e-12
    with ops.op_scope([preds, targets], name, "bce_loss") as name:
        preds = ops.convert_to_tensor(preds, name="preds")
        targets = ops.convert_to_tensor(targets, name="targets")
        return tf.reduce_mean(-(targets * tf.log(preds + eps) +
                              (1. - targets) * tf.log(1. - preds + eps))) 
開發者ID:djsutherland,項目名稱:opt-mmd,代碼行數:19,代碼來源:ops.py

示例2: binary_cross_entropy

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def binary_cross_entropy(preds, targets, name=None):
	"""Computes binary cross entropy given `preds`.

	For brevity, let `x = `, `z = targets`.  The logistic loss is

		loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))

	Args:
		preds: A `Tensor` of type `float32` or `float64`.
		targets: A `Tensor` of the same type and shape as `preds`.
	"""
	eps = 1e-12
	with ops.op_scope([preds, targets], name, "bce_loss") as name:
		preds = ops.convert_to_tensor(preds, name="preds")
		targets = ops.convert_to_tensor(targets, name="targets")
		return tf.reduce_mean(-(targets * tf.log(preds + eps) +
							  (1. - targets) * tf.log(1. - preds + eps))) 
開發者ID:paarthneekhara,項目名稱:text-to-image,代碼行數:19,代碼來源:ops.py

示例3: binary_cross_entropy

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def binary_cross_entropy(preds, targets, name=None):
  """Computes binary cross entropy given `preds`.

    For brevity, let `x = `, `z = targets`.  The logistic loss is

        loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))

    Args:
        preds: A `Tensor` of type `float32` or `float64`.
        targets: A `Tensor` of the same type and shape as `preds`.
    """
  eps = 1e-12
  with ops.op_scope([preds, targets], name, "bce_loss") as name:
    preds = ops.convert_to_tensor(preds, name="preds")
    targets = ops.convert_to_tensor(targets, name="targets")
    return tf.reduce_mean(-(targets * tf.log(preds + eps) +
                            (1. - targets) * tf.log(1. - preds + eps))) 
開發者ID:rubenvillegas,項目名稱:icml2017hierchvid,代碼行數:19,代碼來源:ops.py

示例4: binary_cross_entropy_with_logits

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def binary_cross_entropy_with_logits(logits, targets, name=None):
    """Computes binary cross entropy given `logits`.

    For brevity, let `x = logits`, `z = targets`.  The logistic loss is

        loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))

    Args:
        logits: A `Tensor` of type `float32` or `float64`.
        targets: A `Tensor` of the same type and shape as `logits`.
    """
    eps = 1e-12
    with ops.op_scope([logits, targets], name, "bce_loss") as name:
        logits = ops.convert_to_tensor(logits, name="logits")
        targets = ops.convert_to_tensor(targets, name="targets")
        return tf.reduce_mean(-(logits * tf.log(targets + eps) +
                              (1. - logits) * tf.log(1. - targets + eps))) 
開發者ID:jramapuram,項目名稱:CVAE,代碼行數:19,代碼來源:utils.py

示例5: binary_cross_entropy

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def binary_cross_entropy(preds, targets, name=None):
    """Computes binary cross entropy given `preds`.

    For brevity, let `x = `, `z = targets`.  The logistic loss is

        loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))

    Args:
        preds: A `Tensor` of type `float32` or `float64`.
        targets: A `Tensor` of the same type and shape as `preds`.
    """
    eps = 1e-12
    with ops.op_scope([preds, targets], name, "bce_loss") as name:
        preds = ops.convert_to_tensor(preds, name="preds")
        targets = ops.convert_to_tensor(targets, name="targets")
        return tf.reduce_mean(-(targets * tf.log(preds + eps) +
                                (1. - targets) * tf.log(1. - preds + eps))) 
開發者ID:Ling-Bao,項目名稱:ACSCP_cGAN,代碼行數:19,代碼來源:ops.py

示例6: binary_cross_entropy_with_logits

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def binary_cross_entropy_with_logits(logits, targets, name=None):
    """Computes binary cross entropy given `logits`.

    For brevity, let `x = logits`, `z = targets`.  The logistic loss is

        loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))

    Args:
        logits: A `Tensor` of type `float32` or `float64`.
        targets: A `Tensor` of the same type and shape as `logits`.
    """
    eps = 1e-12
    with ops.op_scope([logits, targets], name, "bce_loss") as name:
        logits = ops.convert_to_tensor(logits, name="logits")
        targets = ops.convert_to_tensor(targets, name="targets")
        loss_batch = -(
            logits * tf.log(targets + eps) + (1. - logits) * tf.log(1. - targets + eps)
        )
        loss_mean = tf.reduce_mean(loss_batch)
        return loss_batch, loss_mean 
開發者ID:brain-research,項目名稱:tensorfuzz,代碼行數:22,代碼來源:ops.py

示例7: binary_cross_entropy

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def binary_cross_entropy(preds, targets, name=None):
	"""Computes binary cross entropy given `preds`.
	For brevity, let `x = `, `z = targets`.  The logistic loss is
		loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
	Args:
		preds: A `Tensor` of type `float32` or `float64`.
		targets: A `Tensor` of the same type and shape as `preds`.
	"""
	eps = 1e-12
	with ops.op_scope([preds, targets], name, "bce_loss") as name:
		preds = ops.convert_to_tensor(preds, name="preds")
		targets = ops.convert_to_tensor(targets, name="targets")
		return tf.reduce_mean(-(targets * tf.log(preds + eps) +
							  (1. - targets) * tf.log(1. - preds + eps))) 
開發者ID:paarthneekhara,項目名稱:text-to-image,代碼行數:16,代碼來源:ops.py

示例8: adjust_gamma

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def adjust_gamma(image, gamma=1, gain=1):
  """Performs Gamma Correction on the input image.
    Also known as Power Law Transform. This function transforms the
    input image pixelwise according to the equation Out = In**gamma
    after scaling each pixel to the range 0 to 1.

  Args:
    image : A Tensor.
    gamma : A scalar. Non negative real number.
    gain  : A scalar. The constant multiplier.

  Returns:
    A Tensor. Gamma corrected output image.

  Notes:
    For gamma greater than 1, the histogram will shift towards left and
    the output image will be darker than the input image.
    For gamma less than 1, the histogram will shift towards right and
    the output image will be brighter than the input image.

  References:
    [1] http://en.wikipedia.org/wiki/Gamma_correction
  """

  with ops.op_scope([image, gamma, gain], None, 'adjust_gamma') as name:
    # Convert pixel value to DT_FLOAT for computing adjusted image
    img = ops.convert_to_tensor(image, name='img', dtype=dtypes.float32)
    # Keep image dtype for computing the scale of corresponding dtype
    image = ops.convert_to_tensor(image, name='image')

    if gamma < 0:
      raise ValueError("Gamma should be a non-negative real number")
    # scale = max(dtype) - min(dtype)
    scale = constant_op.constant(image.dtype.limits[1] - image.dtype.limits[0], dtype=dtypes.float32)
    # According to the definition of gamma correction
    adjusted_img = (img / scale) ** gamma * scale * gain

    return adjusted_img 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:40,代碼來源:image_ops_impl.py

示例9: binary_cross_entropy

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def binary_cross_entropy(output, target, epsilon=1e-8, name='bce_loss'):
    """Computes binary cross entropy given `output`.

    For brevity, let `x = output`, `z = target`.  The binary cross entropy loss is

        loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))

    Parameters
    ----------
    output : tensor of type `float32` or `float64`.
    target : tensor of the same type and shape as `output`.
    epsilon : float
        A small value to avoid output is zero.
    name : string
        An optional name to attach to this layer.

    References
    -----------
    - `DRAW <https://github.com/ericjang/draw/blob/master/draw.py#L73>`_
    """
#     from tensorflow.python.framework import ops
#     with ops.op_scope([output, target], name, "bce_loss") as name:
#         output = ops.convert_to_tensor(output, name="preds")
#         target = ops.convert_to_tensor(targets, name="target")
    with tf.name_scope(name):
        return tf.reduce_mean(tf.reduce_sum(-(target * tf.log(output + epsilon) +
                              (1. - target) * tf.log(1. - output + epsilon)), axis=1)) 
開發者ID:zjuela,項目名稱:LapSRN-tensorflow,代碼行數:29,代碼來源:cost.py

示例10: do_center_crop

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def do_center_crop(value, size, name=None):
    """Randomly crops a tensor to a given size.
    Slices a shape `size` portion out of `value` at a uniformly chosen offset.
    Requires `value.shape >= size`.
    If a dimension should not be cropped, pass the full size of that dimension.
    For example, RGB images can be cropped with
    `size = [crop_height, crop_width, 3]`.
    Args:
        value: Input tensor to crop.
        size: 1-D tensor with size the rank of `value`.
        seed: Python integer. Used to create a random seed. See
            [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
            for behavior.
        name: A name for this operation (optional).
    Returns:
        A cropped tensor of the same rank as `value` and shape `size`.
    """
    # TODO(shlens): Implement edge case to guarantee output size dimensions.
    # If size > value.shape, zero pad the result so that it always has shape
    # exactly size.
    from tensorflow.python.framework import dtypes
    with ops.op_scope([value, size], name, "center_crop") as name:
        value = ops.convert_to_tensor(value, name="value")
        size = ops.convert_to_tensor(size, dtype=dtypes.int32, name="size")
        shape = array_ops.shape(value)
        check = logging_ops.Assert(
                math_ops.reduce_all(shape >= size),
                ["Need value.shape >= size, got ", shape, size])
        shape = control_flow_ops.with_dependencies([check], shape)
        limit = shape - size + 1
        offset = tf.random_uniform(
                array_ops.shape(shape),
                dtype=size.dtype,
                maxval=size.dtype.max,
                seed=0) % limit
        offset2 = shape // 2 - size // 2
        #import ipdb; ipdb.set_trace()
        return array_ops.slice(value, offset, size, name=name) 
開發者ID:gustavla,項目名稱:self-supervision,代碼行數:40,代碼來源:datasets.py

示例11: assign_moving_average

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def assign_moving_average(variable, value, decay, name=None):
  """Compute the moving average of a variable.

  The moving average of 'variable' updated with 'value' is:
    variable * decay + value * (1 - decay)

  The returned Operation sets 'variable' to the newly computed moving average.

  The new value of 'variable' can be set with the 'AssignSub' op as:
     variable -= (1 - decay) * (variable - value)

  Args:
    variable: A Variable.
    value: A tensor with the same shape as 'variable'
    decay: A float Tensor or float value.  The moving average decay.
    name: Optional name of the returned operation.

  Returns:
    An Operation that updates 'variable' with the newly computed
    moving average.
  """
  with ops.op_scope([variable, value, decay], name, "AssignMovingAvg") as scope:
    with ops.colocate_with(variable):
      decay = ops.convert_to_tensor(1.0 - decay, name="decay")
      if decay.dtype != variable.dtype.base_dtype:
        decay = math_ops.cast(decay, variable.dtype.base_dtype)
      return state_ops.assign_sub(variable,
                                  (variable - value) * decay,
                                  name=scope) 
開發者ID:gustavla,項目名稱:self-supervision,代碼行數:31,代碼來源:moving_averages.py

示例12: adjust_gamma

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def adjust_gamma(image, gamma=1, gain=1):
  """Performs Gamma Correction on the input image.
    Also known as Power Law Transform. This function transforms the 
    input image pixelwise according to the equation Out = In**gamma 
    after scaling each pixel to the range 0 to 1.

  Args:
    image : A Tensor.
    gamma : A scalar. Non negative real number.
    gain  : A scalar. The constant multiplier. 

  Returns:
    A Tensor. Gamma corrected output image.

  Notes:
    For gamma greater than 1, the histogram will shift towards left and
    the output image will be darker than the input image.
    For gamma less than 1, the histogram will shift towards right and
    the output image will be brighter than the input image.

  References:
    [1] http://en.wikipedia.org/wiki/Gamma_correction
  """

  with ops.op_scope([image, gamma, gain], None, 'adjust_gamma') as name:
    # Convert pixel value to DT_FLOAT for computing adjusted image
    img = ops.convert_to_tensor(image, name='img', dtype=dtypes.float32)
    # Keep image dtype for computing the scale of corresponding dtype
    image = ops.convert_to_tensor(image, name='image')

    if gamma < 0:
      raise ValueError("Gamma should be a non-negative real number")
    # scale = max(dtype) - min(dtype)
    scale = constant_op.constant(image.dtype.limits[1] - image.dtype.limits[0], dtype=dtypes.float32)
    # According to the definition of gamma correction
    adjusted_img = (img / scale) ** gamma * scale * gain

    return adjusted_img 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:40,代碼來源:image_ops.py

示例13: binary_cross_entropy

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def binary_cross_entropy(preds, targets, name=None):
    """Computes binary cross entropy given `preds`.
    For brevity, let `x = `, `z = targets`.  The logistic loss is
        loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
    Args:
        preds: A `Tensor` of type `float32` or `float64`.
        targets: A `Tensor` of the same type and shape as `preds`.
    """
    eps = 1e-12
    with ops.op_scope([preds, targets], name, "bce_loss") as name:
        preds = ops.convert_to_tensor(preds, name="preds")
        targets = ops.convert_to_tensor(targets, name="targets")
        return tf.reduce_mean(-(targets * tf.log(preds + eps) +
                              (1. - targets) * tf.log(1. - preds + eps))) 
開發者ID:chingyaoc,項目名稱:photo-editing-tensorflow,代碼行數:16,代碼來源:ops.py

示例14: sequence_loss_by_example

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def sequence_loss_by_example(logits, targets, weights,
                             average_across_timesteps=True,
                             softmax_loss_function=None, name=None):
  """Weighted cross-entropy loss for a sequence of logits (per example).

  Args:
    logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
    targets: List of 1D batch-sized int32 Tensors of the same length as logits.
    weights: List of 1D batch-sized float-Tensors of the same length as logits.
    average_across_timesteps: If set, divide the returned cost by the total
      label weight.
    softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
      to be used instead of the standard softmax (the default if this is None).
    name: Optional name for this operation, default: "sequence_loss_by_example".

  Returns:
    1D batch-sized float Tensor: The log-perplexity for each sequence.

  Raises:
    ValueError: If len(logits) is different from len(targets) or len(weights).
  """
  if len(targets) != len(logits) or len(weights) != len(logits):
    raise ValueError("Lengths of logits, weights, and targets must be the same "
                     "%d, %d, %d." % (len(logits), len(weights), len(targets)))
  with ops.op_scope(logits + targets + weights, name,
                    "sequence_loss_by_example"):
    log_perp_list = []
    for logit, target, weight in zip(logits, targets, weights):
      if softmax_loss_function is None:
        target = array_ops.reshape(target, [-1])
        crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(
            logit, target)
      else:
        crossent = softmax_loss_function(logit, target)
      log_perp_list.append(crossent * weight)
    log_perps = math_ops.add_n(log_perp_list)
    if average_across_timesteps:
      total_size = math_ops.add_n(weights)
      total_size += 1e-12  # Just to avoid division by 0 for all-0 weights.
      log_perps /= total_size
  return log_perps 
開發者ID:pbhatia243,項目名稱:Neural_Conversation_Models,代碼行數:43,代碼來源:my_seq2seq.py

示例15: sequence_loss

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import op_scope [as 別名]
def sequence_loss(logits, targets, weights,
                  average_across_timesteps=True, average_across_batch=True,
                  softmax_loss_function=None, name=None):
  """Weighted cross-entropy loss for a sequence of logits, batch-collapsed.

  Args:
    logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols].
    targets: List of 1D batch-sized int32 Tensors of the same length as logits.
    weights: List of 1D batch-sized float-Tensors of the same length as logits.
    average_across_timesteps: If set, divide the returned cost by the total
      label weight.
    average_across_batch: If set, divide the returned cost by the batch size.
    softmax_loss_function: Function (inputs-batch, labels-batch) -> loss-batch
      to be used instead of the standard softmax (the default if this is None).
    name: Optional name for this operation, defaults to "sequence_loss".

  Returns:
    A scalar float Tensor: The average log-perplexity per symbol (weighted).

  Raises:
    ValueError: If len(logits) is different from len(targets) or len(weights).
  """
  with ops.op_scope(logits + targets + weights, name, "sequence_loss"):
    cost = math_ops.reduce_sum(sequence_loss_by_example(
        logits, targets, weights,
        average_across_timesteps=average_across_timesteps,
        softmax_loss_function=softmax_loss_function))
    if average_across_batch:
      batch_size = array_ops.shape(targets[0])[0]
      return cost / math_ops.cast(batch_size, dtypes.float32)
    else:
      return cost 
開發者ID:pbhatia243,項目名稱:Neural_Conversation_Models,代碼行數:34,代碼來源:my_seq2seq.py


注:本文中的tensorflow.python.framework.ops.op_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。