當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.name_scope方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.ops.name_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.name_scope方法的具體用法?Python ops.name_scope怎麽用?Python ops.name_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops.name_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: step

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def step(self, time, inputs, state, name=None):
        with ops.name_scope(name, 'BasicDecoderStep', (time, inputs, state)):
            cell_outputs, cell_state = self._cell(inputs, state)
            projection_inputs = cell_outputs  # get projection_inputs to compute sampled_softmax_cross_entropy_loss
            if self._output_layer is not None:
                cell_outputs = self._output_layer(cell_outputs)
            sample_ids = self._helper.sample(
                time=time, outputs=cell_outputs, state=cell_state)
            (finished, next_inputs, next_state) = self._helper.next_inputs(
                time=time,
                outputs=cell_outputs,
                state=cell_state,
                sample_ids=sample_ids)
        outputs = BasicDecoderOutput(cell_outputs, sample_ids,
                                     projection_inputs)
        return (outputs, next_state, next_inputs, finished) 
開發者ID:uber,項目名稱:ludwig,代碼行數:18,代碼來源:recurrent_modules.py

示例2: dense_to_sparse

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def dense_to_sparse(tensor, eos_token=0, outputs_collections=None, scope=None):
  """Converts a dense tensor into a sparse tensor.

  An example use would be to convert dense labels to sparse ones
  so that they can be fed to the ctc_loss.

  Args:
     tensor: An `int` `Tensor` to be converted to a `Sparse`.
     eos_token: An integer. It is part of the target label that signifies the
       end of a sentence.
     outputs_collections: Collection to add the outputs.
     scope: Optional scope for name_scope.
  """
  with variable_scope.variable_scope(scope, 'dense_to_sparse', [tensor]) as sc:
    tensor = ops.convert_to_tensor(tensor)
    indices = array_ops.where(
        math_ops.not_equal(tensor, constant_op.constant(eos_token,
                                                        tensor.dtype)))
    values = array_ops.gather_nd(tensor, indices)
    shape = array_ops.shape(tensor, out_type=dtypes.int64)
    outputs = sparse_tensor.SparseTensor(indices, values, shape)
    return utils.collect_named_outputs(outputs_collections, sc.name, outputs) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:24,代碼來源:layers.py

示例3: flatten

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def flatten(inputs, outputs_collections=None, scope=None):
  """Flattens the input while maintaining the batch_size.

    Assumes that the first dimension represents the batch.

  Args:
    inputs: A tensor of size [batch_size, ...].
    outputs_collections: Collection to add the outputs.
    scope: Optional scope for name_scope.

  Returns:
    A flattened tensor with shape [batch_size, k].
  Raises:
    ValueError: If inputs rank is unknown or less than 2.
  """
  with ops.name_scope(scope, 'Flatten', [inputs]) as sc:
    inputs = ops.convert_to_tensor(inputs)
    outputs = core_layers.flatten(inputs)
    return utils.collect_named_outputs(outputs_collections, sc, outputs) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:21,代碼來源:layers.py

示例4: _lower_bound

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def _lower_bound(inputs, bound, name=None):
    """Same as tf.maximum, but with helpful gradient for inputs < bound.

    The gradient is overwritten so that it is passed through if the input is not
    hitting the bound. If it is, only gradients that push `inputs` higher than
    the bound are passed through. No gradients are passed through to the bound.

    Args:
      inputs: input tensor
      bound: lower bound for the input tensor
      name: name for this op

    Returns:
      tf.maximum(inputs, bound)
    """
    with ops.name_scope(name, 'GDNLowerBound', [inputs, bound]) as scope:
      inputs = ops.convert_to_tensor(inputs, name='inputs')
      bound = ops.convert_to_tensor(bound, name='bound')
      with ops.get_default_graph().gradient_override_map(
          {'Maximum': 'GDNLowerBound'}):
        return math_ops.maximum(inputs, bound, name=scope) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:23,代碼來源:layers.py

示例5: zero_state

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def zero_state(self, batch_size, dtype):
    """Return zero-filled state tensor(s).

    Args:
      batch_size: int, float, or unit Tensor representing the batch size.
      dtype: the data type to use for the state.

    Returns:
      If `state_size` is an int or TensorShape, then the return value is a
      `N-D` tensor of shape `[batch_size x state_size]` filled with zeros.

      If `state_size` is a nested list or tuple, then the return value is
      a nested list or tuple (of the same structure) of `2-D` tensors with
      the shapes `[batch_size x s]` for each s in `state_size`.
    """
    with ops.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
      state_size = self.state_size
      return _zero_state_tensors(state_size, batch_size, dtype) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:rnn_cell_impl.py

示例6: size_internal

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
  # pylint: disable=redefined-builtin,protected-access
  """Returns the size of a tensor.

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    optimize: if true, encode the size as a constant when possible.
    out_type: (Optional) The specified output type of the operation
      (`int32` or `int64`). Defaults to tf.int32.

  Returns:
    A `Tensor` of type `out_type`.
  """
  with ops.name_scope(name, "Size", [input]) as name:
    if isinstance(
        input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
      return gen_math_ops._prod(
          gen_math_ops.cast(input.dense_shape, out_type), 0, name=name)
    else:
      input_tensor = ops.convert_to_tensor(input)
      input_shape = input_tensor.get_shape()
      if optimize and input_shape.is_fully_defined():
        return constant(input_shape.num_elements(), out_type, name=name)
      return gen_array_ops.size(input, name=name, out_type=out_type) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:array_ops.py

示例7: rank_internal

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def rank_internal(input, name=None, optimize=True):
  # pylint: disable=redefined-builtin
  """Returns the rank of a tensor.

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    optimize: if true, encode the rank as a constant when possible.

  Returns:
    A `Tensor` of type `int32`.
  """
  with ops.name_scope(name, "Rank", [input]) as name:
    if isinstance(
        input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
      return gen_array_ops.size(input.dense_shape, name=name)
    else:
      input_tensor = ops.convert_to_tensor(input)
      input_shape = input_tensor.get_shape()
      if optimize and input_shape.ndims is not None:
        return constant(input_shape.ndims, dtypes.int32, name=name)
      return gen_array_ops.rank(input, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:array_ops.py

示例8: __init__

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def __init__(self,
               reuse,
               name="",
               initializer=None,
               regularizer=None,
               caching_device=None,
               partitioner=None,
               custom_getter=None,
               name_scope="",
               dtype=dtypes.float32,
               use_resource=None):
    """Creates a new VariableScope with the given properties."""
    self._name = name
    self._initializer = initializer
    self._regularizer = regularizer
    self._reuse = reuse
    self._caching_device = caching_device
    self._partitioner = partitioner
    self._custom_getter = custom_getter
    self._name_scope = name_scope
    self._dtype = dtype
    self._use_resource = use_resource 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:variable_scope.py

示例9: crelu

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def crelu(features, name=None):
  """Computes Concatenated ReLU.

  Concatenates a ReLU which selects only the positive part of the activation
  with a ReLU which selects only the *negative* part of the activation.
  Note that as a result this non-linearity doubles the depth of the activations.
  Source: [Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units. W. Shang, et al.](https://arxiv.org/abs/1603.05201) 

  Args:
    features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
      `int16`, or `int8`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` with the same type as `features`.
  """
  with ops.name_scope(name, "CRelu", [features]) as name:
    features = ops.convert_to_tensor(features, name="features")
    c = array_ops.concat([features, -features], -1, name=name)
    return gen_nn_ops.relu(c) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:nn_ops.py

示例10: xw_plus_b

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def xw_plus_b(x, weights, biases, name=None):  # pylint: disable=invalid-name
  """Computes matmul(x, weights) + biases.

  Args:
    x: a 2D tensor.  Dimensions typically: batch, in_units
    weights: a 2D tensor.  Dimensions typically: in_units, out_units
    biases: a 1D tensor.  Dimensions: out_units
    name: A name for the operation (optional).  If not specified
      "xw_plus_b" is used.

  Returns:
    A 2-D Tensor computing matmul(x, weights) + biases.
    Dimensions typically: batch, out_units.
  """
  with ops.name_scope(name, "xw_plus_b", [x, weights, biases]) as name:
    x = ops.convert_to_tensor(x, name="x")
    weights = ops.convert_to_tensor(weights, name="weights")
    biases = ops.convert_to_tensor(biases, name="biases")
    mm = math_ops.matmul(x, weights)
    return bias_add(mm, biases, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:nn_ops.py

示例11: step

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def step(self, time, inputs, state, name=None):
        """Perform a decoding step.
        Args:
          time: scalar `int32` tensor.
          inputs: A (structure of) input tensors.
          state: A (structure of) state tensors and TensorArrays.
          name: Name scope for any created operations.
        Returns:
          `(outputs, next_state, next_inputs, finished)`.
        """
        with ops.name_scope(name, "BasicDecoderStep", (time, inputs, state)):
            cell_outputs, cell_state = self._cell(inputs, state)

            if self._output_layer is not None:
                cell_outputs = self._output_layer(cell_outputs)
            sample_ids = self._helper.sample(
                time=time, outputs=cell_outputs, state=cell_state)
            (finished, next_inputs, next_state) = self._helper.next_inputs(
                time=time,
                outputs=cell_outputs,
                state=cell_state,
                sample_ids=sample_ids)

            # Concatenate the latent vector to the predicted word's embedding
            next_inputs = tf.concat([next_inputs, self._latent_vector], axis=-1)

        outputs = BasicDecoderOutput(cell_outputs, sample_ids)

        return (outputs, next_state, next_inputs, finished) 
開發者ID:vineetjohn,項目名稱:linguistic-style-transfer,代碼行數:31,代碼來源:custom_decoder.py

示例12: initialize

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def initialize(self, name=None):
        with ops.name_scope(name, "%sInitialize" % type(self).__name__):
            (finished, next_inputs) = self._initialize_fn()
            if self._batch_size is None:
                self._batch_size = array_ops.size(finished)
        return (finished, next_inputs) 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:8,代碼來源:tf_helpers.py

示例13: sample

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def sample(self, time, outputs, state, name=None):
        with ops.name_scope(
                name, "%sSample" % type(self).__name__, (time, outputs, state)):
            return self._sample_fn(time=time, outputs=outputs, state=state) 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:6,代碼來源:tf_helpers.py

示例14: next_inputs

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def next_inputs(self, time, outputs, state, sample_ids, name=None):
        with ops.name_scope(
                name, "%sNextInputs" % type(self).__name__, (time, outputs, state)):
            return self._next_inputs_fn(
                time=time, outputs=outputs, state=state, sample_ids=sample_ids) 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:7,代碼來源:tf_helpers.py

示例15: __init__

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import name_scope [as 別名]
def __init__(self, inputs, sequence_length, time_major=False, name=None):
        """Initializer.

        Args:
          inputs: A (structure of) input tensors.
          sequence_length: An int32 vector tensor.
          time_major: Python bool.  Whether the tensors in `inputs` are time major.
            If `False` (default), they are assumed to be batch major.
          name: Name scope for any created operations.

        Raises:
          ValueError: if `sequence_length` is not a 1D tensor.
        """
        with ops.name_scope(name, "TrainingHelper", [inputs, sequence_length]):
            inputs = ops.convert_to_tensor(inputs, name="inputs")
            self._inputs = inputs
            if not time_major:
                inputs = nest.map_structure(_transpose_batch_time, inputs)

            self._input_tas = nest.map_structure(_unstack_ta, inputs)
            self._sequence_length = ops.convert_to_tensor(
                sequence_length, name="sequence_length")
            if self._sequence_length.get_shape().ndims != 1:
                raise ValueError(
                    "Expected sequence_length to be a vector, but received shape: %s" %
                    self._sequence_length.get_shape())

            self._zero_inputs = nest.map_structure(
                lambda inp: array_ops.zeros_like(inp[0, :]), inputs)

            self._batch_size = shape_list(sequence_length)[0] 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:33,代碼來源:tf_helpers.py


注:本文中的tensorflow.python.framework.ops.name_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。