本文整理匯總了Python中tensorflow.python.framework.ops.is_dense_tensor_like方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.is_dense_tensor_like方法的具體用法?Python ops.is_dense_tensor_like怎麽用?Python ops.is_dense_tensor_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.ops
的用法示例。
在下文中一共展示了ops.is_dense_tensor_like方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _get_dtype_from_nested_lists
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def _get_dtype_from_nested_lists(list_or_tuple):
"""Returns the dtype of any tensor-like object in `list_or_tuple`, if found.
Args:
list_or_tuple: A list or tuple representing an object that can be
converted to a `tf.Tensor`.
Returns:
The dtype of any tensor-like object in `list_or_tuple`, or `None` if no
such object exists.
"""
for elem in list_or_tuple:
if ops.is_dense_tensor_like(elem):
return elem.dtype.base_dtype
elif isinstance(elem, (list, tuple)):
maybe_dtype = _get_dtype_from_nested_lists(elem)
if maybe_dtype is not None:
return maybe_dtype
return None
示例2: is_tensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def is_tensor(x): # pylint: disable=invalid-name
"""Check whether `x` is of tensor type.
Check whether an object is a tensor. Equivalent to
`isinstance(x, [tf.Tensor, tf.SparseTensor, tf.Variable])`.
Args:
x: An python object to check.
Returns:
`True` if `x` is a tensor, `False` if not.
"""
return isinstance(x, ops._TensorLike) or ops.is_dense_tensor_like(x) # pylint: disable=protected-access
示例3: is_tensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def is_tensor(node):
# return (isinstance(node, (tf.Tensor, tf.Variable))
# or resource_variable_ops.is_resource_variable(node))
return tf_ops.is_dense_tensor_like(node)
示例4: is_tensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def is_tensor(x):
return isinstance(x, tf_ops._TensorLike) or tf_ops.is_dense_tensor_like(x)
示例5: testSuccess
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def testSuccess(self):
op = ops.Operation(ops._NodeDef("noop", "myop"), ops.Graph(),
[], [dtypes.float32])
t = op.outputs[0]
self.assertTrue(ops.is_dense_tensor_like(t))
v = variables.Variable([17])
self.assertTrue(ops.is_dense_tensor_like(v))
示例6: _autopacking_helper
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def _autopacking_helper(list_or_tuple, dtype, name):
"""Converts the given list or tuple to a tensor by packing.
Args:
list_or_tuple: A (possibly nested) list or tuple containing a tensor.
dtype: The element type of the returned tensor.
name: A name for the returned tensor.
Returns:
A `tf.Tensor` with value equivalent to `list_or_tuple`.
"""
must_pack = False
converted_elems = []
with ops.name_scope(name) as scope:
for i, elem in enumerate(list_or_tuple):
if ops.is_dense_tensor_like(elem):
if dtype is not None and elem.dtype.base_dtype != dtype:
raise TypeError(
"Cannot convert a list containing a tensor of dtype "
"%s to %s (Tensor is: %r)" % (elem.dtype, dtype, elem))
converted_elems.append(elem)
must_pack = True
elif isinstance(elem, (list, tuple)):
converted_elem = _autopacking_helper(elem, dtype, str(i))
if ops.is_dense_tensor_like(converted_elem):
must_pack = True
converted_elems.append(converted_elem)
else:
converted_elems.append(elem)
if must_pack:
elems_as_tensors = []
for i, elem in enumerate(converted_elems):
if ops.is_dense_tensor_like(elem):
elems_as_tensors.append(elem)
else:
# NOTE(mrry): This is inefficient, but it enables us to
# handle the case where the list arguments are other
# convertible-to-tensor types, such as numpy arrays.
elems_as_tensors.append(
constant_op.constant(elem, dtype=dtype, name=str(i)))
return gen_array_ops._pack(elems_as_tensors, name=scope)
else:
return converted_elems
示例7: _autopacking_helper
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def _autopacking_helper(list_or_tuple, dtype, name):
"""Converts the given list or tuple to a tensor by packing.
Args:
list_or_tuple: A (possibly nested) list or tuple containing a tensor.
dtype: The element type of the returned tensor.
name: A name for the returned tensor.
Returns:
A `tf.Tensor` with value equivalent to `list_or_tuple`.
"""
must_pack = False
converted_elems = []
with ops.name_scope(name) as scope:
for i, elem in enumerate(list_or_tuple):
if ops.is_dense_tensor_like(elem):
if dtype is not None and elem.dtype.base_dtype != dtype:
raise TypeError("Cannot convert a list containing a tensor of dtype "
"%s to %s (Tensor is: %r)" % (elem.dtype, dtype,
elem))
converted_elems.append(elem)
must_pack = True
elif isinstance(elem, (list, tuple)):
converted_elem = _autopacking_helper(elem, dtype, str(i))
if ops.is_dense_tensor_like(converted_elem):
must_pack = True
converted_elems.append(converted_elem)
else:
converted_elems.append(elem)
if must_pack:
elems_as_tensors = []
for i, elem in enumerate(converted_elems):
if ops.is_dense_tensor_like(elem):
elems_as_tensors.append(elem)
else:
# NOTE(mrry): This is inefficient, but it enables us to
# handle the case where the list arguments are other
# convertible-to-tensor types, such as numpy arrays.
elems_as_tensors.append(
constant_op.constant(elem, dtype=dtype, name=str(i)))
return gen_array_ops._pack(elems_as_tensors, name=scope)
else:
return converted_elems
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:45,代碼來源:array_ops.py