當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.is_dense_tensor_like方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.ops.is_dense_tensor_like方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.is_dense_tensor_like方法的具體用法?Python ops.is_dense_tensor_like怎麽用?Python ops.is_dense_tensor_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops.is_dense_tensor_like方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_dtype_from_nested_lists

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def _get_dtype_from_nested_lists(list_or_tuple):
  """Returns the dtype of any tensor-like object in `list_or_tuple`, if found.

  Args:
    list_or_tuple: A list or tuple representing an object that can be
      converted to a `tf.Tensor`.

  Returns:
    The dtype of any tensor-like object in `list_or_tuple`, or `None` if no
    such object exists.
  """
  for elem in list_or_tuple:
    if ops.is_dense_tensor_like(elem):
      return elem.dtype.base_dtype
    elif isinstance(elem, (list, tuple)):
      maybe_dtype = _get_dtype_from_nested_lists(elem)
      if maybe_dtype is not None:
        return maybe_dtype
  return None 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:array_ops.py

示例2: is_tensor

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def is_tensor(x):  # pylint: disable=invalid-name
  """Check whether `x` is of tensor type.

  Check whether an object is a tensor. Equivalent to
  `isinstance(x, [tf.Tensor, tf.SparseTensor, tf.Variable])`.

  Args:
    x: An python object to check.

  Returns:
    `True` if `x` is a tensor, `False` if not.
  """
  return isinstance(x, ops._TensorLike) or ops.is_dense_tensor_like(x)  # pylint: disable=protected-access 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:15,代碼來源:tensor_util.py

示例3: is_tensor

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def is_tensor(node):
  # return (isinstance(node, (tf.Tensor, tf.Variable))
  #         or resource_variable_ops.is_resource_variable(node))
  return tf_ops.is_dense_tensor_like(node) 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:6,代碼來源:tensorflow_graph_util.py

示例4: is_tensor

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def is_tensor(x):
    return isinstance(x, tf_ops._TensorLike) or tf_ops.is_dense_tensor_like(x) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:4,代碼來源:tensorflow_backend.py

示例5: testSuccess

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def testSuccess(self):
    op = ops.Operation(ops._NodeDef("noop", "myop"), ops.Graph(),
                       [], [dtypes.float32])
    t = op.outputs[0]
    self.assertTrue(ops.is_dense_tensor_like(t))

    v = variables.Variable([17])
    self.assertTrue(ops.is_dense_tensor_like(v)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:ops_test.py

示例6: _autopacking_helper

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def _autopacking_helper(list_or_tuple, dtype, name):
  """Converts the given list or tuple to a tensor by packing.

  Args:
    list_or_tuple: A (possibly nested) list or tuple containing a tensor.
    dtype: The element type of the returned tensor.
    name: A name for the returned tensor.

  Returns:
    A `tf.Tensor` with value equivalent to `list_or_tuple`.
  """
  must_pack = False
  converted_elems = []
  with ops.name_scope(name) as scope:
    for i, elem in enumerate(list_or_tuple):
      if ops.is_dense_tensor_like(elem):
        if dtype is not None and elem.dtype.base_dtype != dtype:
          raise TypeError(
              "Cannot convert a list containing a tensor of dtype "
              "%s to %s (Tensor is: %r)" % (elem.dtype, dtype, elem))
        converted_elems.append(elem)
        must_pack = True
      elif isinstance(elem, (list, tuple)):
        converted_elem = _autopacking_helper(elem, dtype, str(i))
        if ops.is_dense_tensor_like(converted_elem):
          must_pack = True
        converted_elems.append(converted_elem)
      else:
        converted_elems.append(elem)
    if must_pack:
      elems_as_tensors = []
      for i, elem in enumerate(converted_elems):
        if ops.is_dense_tensor_like(elem):
          elems_as_tensors.append(elem)
        else:
          # NOTE(mrry): This is inefficient, but it enables us to
          # handle the case where the list arguments are other
          # convertible-to-tensor types, such as numpy arrays.
          elems_as_tensors.append(
              constant_op.constant(elem, dtype=dtype, name=str(i)))
      return gen_array_ops._pack(elems_as_tensors, name=scope)
    else:
      return converted_elems 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:45,代碼來源:array_ops.py

示例7: _autopacking_helper

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import is_dense_tensor_like [as 別名]
def _autopacking_helper(list_or_tuple, dtype, name):
  """Converts the given list or tuple to a tensor by packing.

  Args:
    list_or_tuple: A (possibly nested) list or tuple containing a tensor.
    dtype: The element type of the returned tensor.
    name: A name for the returned tensor.

  Returns:
    A `tf.Tensor` with value equivalent to `list_or_tuple`.
  """
  must_pack = False
  converted_elems = []
  with ops.name_scope(name) as scope:
    for i, elem in enumerate(list_or_tuple):
      if ops.is_dense_tensor_like(elem):
        if dtype is not None and elem.dtype.base_dtype != dtype:
          raise TypeError("Cannot convert a list containing a tensor of dtype "
                          "%s to %s (Tensor is: %r)" % (elem.dtype, dtype,
                                                        elem))
        converted_elems.append(elem)
        must_pack = True
      elif isinstance(elem, (list, tuple)):
        converted_elem = _autopacking_helper(elem, dtype, str(i))
        if ops.is_dense_tensor_like(converted_elem):
          must_pack = True
        converted_elems.append(converted_elem)
      else:
        converted_elems.append(elem)
    if must_pack:
      elems_as_tensors = []
      for i, elem in enumerate(converted_elems):
        if ops.is_dense_tensor_like(elem):
          elems_as_tensors.append(elem)
        else:
          # NOTE(mrry): This is inefficient, but it enables us to
          # handle the case where the list arguments are other
          # convertible-to-tensor types, such as numpy arrays.
          elems_as_tensors.append(
              constant_op.constant(elem, dtype=dtype, name=str(i)))
      return gen_array_ops._pack(elems_as_tensors, name=scope)
    else:
      return converted_elems 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:45,代碼來源:array_ops.py


注:本文中的tensorflow.python.framework.ops.is_dense_tensor_like方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。