當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.internal_convert_to_tensor方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.ops.internal_convert_to_tensor方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.internal_convert_to_tensor方法的具體用法?Python ops.internal_convert_to_tensor怎麽用?Python ops.internal_convert_to_tensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops.internal_convert_to_tensor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def __init__(self, example_indices, feature_indices, feature_values):
    """Creates a `SparseFeatureColumn` representation.

    Args:
      example_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts
      python lists, or numpy arrays.
      feature_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts
      python lists, or numpy arrays.
      feature_values: An optional 1-D tensor float tensor of shape `[N]`. Also,
      accepts python lists, or numpy arrays.

    Returns:
      A `SparseFeatureColumn`
    """
    with name_scope(None, 'SparseFeatureColumn',
                    [example_indices, feature_indices]):
      self._example_indices = internal_convert_to_tensor(
          example_indices, name='example_indices', dtype=dtypes.int64)
      self._feature_indices = internal_convert_to_tensor(
          feature_indices, name='feature_indices', dtype=dtypes.int64)
    self._feature_values = None
    if feature_values is not None:
      with name_scope(None, 'SparseFeatureColumn', [feature_values]):
        self._feature_values = internal_convert_to_tensor(
            feature_values, name='feature_values', dtype=dtypes.float32) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:sparse_feature_column.py

示例2: __init__

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def __init__(self, example_indices, feature_indices, feature_values):
    """Creates a `_SparseFeatureColumn` representation.

    Args:
      example_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts python
        lists, or numpy arrays.
      feature_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts python
        lists, or numpy arrays.
      feature_values: An optional 1-D tensor float tensor of shape `[N]`. Also,
        accepts python lists, or numpy arrays.

    Returns:
      A `_SparseFeatureColumn`
    """
    with name_scope(None, 'SparseFeatureColumn',
                    [example_indices, feature_indices]):
      self._example_indices = internal_convert_to_tensor(
          example_indices, name='example_indices', dtype=tf.dtypes.int64)
      self._feature_indices = internal_convert_to_tensor(
          feature_indices, name='feature_indices', dtype=tf.dtypes.int64)
    self._feature_values = None
    if feature_values is not None:
      with name_scope(None, 'SparseFeatureColumn', [feature_values]):
        self._feature_values = internal_convert_to_tensor(
            feature_values, name='feature_values', dtype=tf.dtypes.float32) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:27,代碼來源:sdca_ops.py

示例3: _convert_factored_tensor_to_tensor

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _convert_factored_tensor_to_tensor(value, *args, **kwargs):
  # call ops.convert_to_tensor to handle optional arguments appropriately
  return ops.internal_convert_to_tensor(value.to_tensor(), *args, **kwargs) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:5,代碼來源:common_layers.py

示例4: __init__

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def __init__(self, indices, values, dense_shape):
    """Creates a `SparseTensor`.

    Args:
      indices: A 2-D int64 tensor of shape `[N, ndims]`.
      values: A 1-D tensor of any type and shape `[N]`.
      dense_shape: A 1-D int64 tensor of shape `[ndims]`.

    Returns:
      A `SparseTensor`.
    """
    with ops.name_scope(None, "SparseTensor",
                        [indices, values, dense_shape]):
      indices = ops.convert_to_tensor(
          indices, name="indices", dtype=dtypes.int64)
      # Always pass as_ref=True because we want to be able to update
      # values later if it is a VariableOp.
      # TODO(touts): Consider adding mutable_values() when 'values'
      # is a VariableOp and updating users of SparseTensor.
      values = ops.internal_convert_to_tensor(
          values, name="values", as_ref=True)
      dense_shape = ops.convert_to_tensor(
          dense_shape, name="dense_shape", dtype=dtypes.int64)
    self._indices = indices
    self._values = values
    self._dense_shape = dense_shape

    indices_shape = indices.get_shape().with_rank(2)
    values_shape = values.get_shape().with_rank(1)
    dense_shape_shape = dense_shape.get_shape().with_rank(1)

    # Assert number of rows in indices match the number of elements in values.
    indices_shape[0].merge_with(values_shape[0])
    # Assert number of columns in indices matches the number of elements in
    # dense_shape.
    indices_shape[1].merge_with(dense_shape_shape[0]) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:sparse_tensor.py

示例5: convert_to_tensor_or_sparse_tensor

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def convert_to_tensor_or_sparse_tensor(value, dtype=None, name=None):
  """Converts value to a `SparseTensor` or `Tensor`.

  Args:
    value: A `SparseTensor`, `SparseTensorValue`, or an object whose type has a
      registered `Tensor` conversion function.
    dtype: Optional element type for the returned tensor. If missing, the
      type is inferred from the type of `value`.
    name: Optional name to use if a new `Tensor` is created.

  Returns:
    A `SparseTensor` or `Tensor` based on `value`.

  Raises:
    RuntimeError: If result type is incompatible with `dtype`.
  """
  if dtype is not None:
    dtype = dtypes.as_dtype(dtype)
  if isinstance(value, SparseTensorValue):
    value = SparseTensor.from_value(value)
  if isinstance(value, SparseTensor):
    if dtype and not dtype.is_compatible_with(value.dtype):
      raise RuntimeError(
          "Sparse dtype: requested = %s, actual = %s" % (
              dtype.name, value.dtype.name))
    return value
  return ops.internal_convert_to_tensor(
      value, dtype=dtype, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:30,代碼來源:sparse_tensor.py

示例6: _convert_n_to_tensor

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _convert_n_to_tensor(self, input_list, as_ref=False):
    """Converts input list to a set of tensors."""
    return [internal_convert_to_tensor(x, as_ref=as_ref) for x in input_list] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:5,代碼來源:sdca_ops.py

示例7: regularized_loss

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def regularized_loss(self, examples):
    """Add operations to compute the loss with regularization loss included.

    Args:
      examples: Examples to compute loss on.

    Returns:
      An Operation that computes mean (regularized) loss for given set of
      examples.
    Raises:
      ValueError: if examples are not well defined.
    """
    self._assertSpecified([
        'example_labels', 'example_weights', 'sparse_features', 'dense_features'
    ], examples)
    self._assertList(['sparse_features', 'dense_features'], examples)
    with name_scope('sdca/regularized_loss'):
      weights = internal_convert_to_tensor(examples['example_weights'])
      return ((
          self._l1_loss() +
          # Note that here we are using the raw regularization
          # (as specified by the user) and *not*
          # self._symmetric_l2_regularization().
          self._l2_loss(self._options['symmetric_l2_regularization'])) /
              math_ops.reduce_sum(math_ops.cast(weights, dtypes.float64)) +
              self.unregularized_loss(examples)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:28,代碼來源:sdca_ops.py

示例8: _convert_labeled_tensor_to_tensor

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _convert_labeled_tensor_to_tensor(value, *args, **kwargs):
  # call ops.convert_to_tensor to handle optional arguments appropriately
  return ops.internal_convert_to_tensor(value.tensor, *args, **kwargs) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:5,代碼來源:core.py

示例9: _l1_loss

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _l1_loss(self):
    """Computes the (un-normalized) l1 loss of the model."""
    with name_scope('sdca/l1_loss'):
      sums = []
      for name in ['sparse_features_weights', 'dense_features_weights']:
        for var in self._variables[name]:
          for v in self._var_to_list(var):
            weights = internal_convert_to_tensor(v)
            with tf.compat.v1.device(weights.device):
              sums.append(
                  tf.math.reduce_sum(
                      tf.math.abs(tf.cast(weights, tf.dtypes.float64))))
      # SDCA L1 regularization cost is: l1 * sum(|weights|)
      return self._symmetric_l1_regularization() * tf.math.add_n(sums) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:16,代碼來源:sdca_ops.py

示例10: _l2_loss

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _l2_loss(self):
    """Computes the (un-normalized) l2 loss of the model."""
    with name_scope('sdca/l2_loss'):
      sums = []
      for name in ['sparse_features_weights', 'dense_features_weights']:
        for var in self._variables[name]:
          for v in self._var_to_list(var):
            weights = internal_convert_to_tensor(v)
            with tf.compat.v1.device(weights.device):
              sums.append(
                  tf.math.reduce_sum(
                      tf.math.square(tf.cast(weights, tf.dtypes.float64))))
      # SDCA L2 regularization cost is: l2 * sum(weights^2) / 2
      return self._symmetric_l2_regularization() * tf.math.add_n(sums) / 2.0 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:16,代碼來源:sdca_ops.py

示例11: _convert_n_to_tensor

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _convert_n_to_tensor(self, input_list, as_ref=False):
    """Converts input list to a set of tensors."""
    # input_list can be a list of Variables (that are implicitly partitioned),
    # in which case the underlying logic in internal_convert_to_tensor will not
    # concatenate the partitions together.  This method takes care of the
    # concatenating (we only allow partitioning on the first axis).
    output_list = []
    for x in input_list:
      tensor_to_convert = x
      if isinstance(x, list) or isinstance(x, var_ops.PartitionedVariable):
        # We only allow for partitioning on the first axis.
        tensor_to_convert = tf.concat(x, axis=0)
      output_list.append(
          internal_convert_to_tensor(tensor_to_convert, as_ref=as_ref))
    return output_list 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:17,代碼來源:sdca_ops.py

示例12: _convert_labeled_tensor_mock_to_tensor

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _convert_labeled_tensor_mock_to_tensor(value, *args, **kwargs):
  return ops.internal_convert_to_tensor(value.tensor, *args, **kwargs) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:4,代碼來源:export_test.py

示例13: args_to_matching_eager

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def args_to_matching_eager(l, ctx, default_dtype=None):
  """Convert sequence `l` to eager same-type Tensors."""
  EagerTensor = ops.EagerTensor  # pylint: disable=invalid-name
  if all(isinstance(x, EagerTensor) for x in l):
    return l[0].dtype, l
  # TODO(josh11b): Could we do a better job if we also passed in the
  # allowed dtypes when that was known?

  # Is some input already a Tensor with a dtype?
  dtype = None
  for t in l:
    if isinstance(t, EagerTensor):
      dtype = t.dtype
      break

  internal_convert_to_tensor = ops.internal_convert_to_tensor
  if dtype is None:
    # Infer a dtype based on the first value, and use that dtype for the
    # remaining values.
    ret = []
    for t in l:
      ret.append(internal_convert_to_tensor(
          t, dtype, preferred_dtype=default_dtype, ctx=ctx))
      if dtype is None:
        dtype = ret[-1].dtype
  else:
    ret = [internal_convert_to_tensor(t, dtype, ctx=ctx) for t in l]

  return dtype, ret 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:31,代碼來源:execute.py

示例14: args_to_mixed_eager_tensors

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def args_to_mixed_eager_tensors(lists, ctx):
  """Converts a list of same-length lists of values to eager tensors."""
  assert len(lists) > 1

  # Generate an error if len(lists[i]) is not the same for all i.
  lists_ret = []
  for l in lists[1:]:
    if len(l) != len(lists[0]):
      raise ValueError(
          "Expected list arguments to be the same length: %d != %d (%r vs. %r)."
          % (len(lists[0]), len(l), lists[0], l))
    lists_ret.append([])

  # Convert the first element of each list first, then the second element, etc.
  types = []
  for i in range(len(lists[0])):
    dtype = None
    # If any list has a Tensor, use that dtype
    for l in lists:
      if isinstance(l[i], ops.EagerTensor):
        dtype = l[i].dtype
        break
    if dtype is None:
      # Convert the first one and use its dtype.
      lists_ret[0].append(ops.internal_convert_to_tensor(lists[0][i], ctx=ctx))
      dtype = lists_ret[0][i].dtype
      for j in range(1, len(lists)):
        lists_ret[j].append(
            ops.internal_convert_to_tensor(lists[j][i], dtype=dtype, ctx=ctx))
    else:
      # Convert everything to the found dtype.
      for j in range(len(lists)):
        lists_ret[j].append(
            ops.internal_convert_to_tensor(lists[j][i], dtype=dtype, ctx=ctx))
    types.append(dtype)
  return types, lists_ret 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:38,代碼來源:execute.py

示例15: _backprop_call

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _backprop_call(self, args):
    """Calls the wrapped function and records the result on a tape."""
    all_args = args + self._extra_inputs
    signature = self._forward_fdef.definition.signature
    ctx = context.context()
    if ctx.in_graph_mode():
      g = ops.get_default_graph()
      g._add_function(self._forward_fdef)  # pylint: disable=protected-access
      def make_tensor(x):
        if isinstance(x, ops.Tensor):
          return x
        return ops.internal_convert_to_tensor(x, ctx=ctx)
      op = g.create_op(
          signature.name, [make_tensor(x) for x in all_args],
          [dtypes.DType(x.type) for x in signature.output_arg],
          op_def=signature,
          name="FunctionCall",
          compute_shapes=False)
      outputs = op.outputs
      outputs = [outputs] if isinstance(
          outputs, (ops.Tensor, type(None))) else list(outputs)
      for i, s in enumerate(self._output_shapes):
        outputs[i].set_shape(s)
    else:
      outputs = execute.execute(
          str(signature.name),
          num_outputs=len(signature.output_arg),
          inputs=all_args,
          attrs=None,
          ctx=ctx)
    real_outputs = outputs[:len(self._returns)]
    side_outputs = outputs[len(self._returns):]

    tape.record_operation(
        signature.name,
        real_outputs,
        (args + self._extra_inputs),
        side_outputs,
        self._backward_function)

    return self._build_call_outputs(self._returns, real_outputs) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:43,代碼來源:function.py


注:本文中的tensorflow.python.framework.ops.internal_convert_to_tensor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。