本文整理匯總了Python中tensorflow.python.framework.ops.internal_convert_to_tensor方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.internal_convert_to_tensor方法的具體用法?Python ops.internal_convert_to_tensor怎麽用?Python ops.internal_convert_to_tensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.ops
的用法示例。
在下文中一共展示了ops.internal_convert_to_tensor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def __init__(self, example_indices, feature_indices, feature_values):
"""Creates a `SparseFeatureColumn` representation.
Args:
example_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts
python lists, or numpy arrays.
feature_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts
python lists, or numpy arrays.
feature_values: An optional 1-D tensor float tensor of shape `[N]`. Also,
accepts python lists, or numpy arrays.
Returns:
A `SparseFeatureColumn`
"""
with name_scope(None, 'SparseFeatureColumn',
[example_indices, feature_indices]):
self._example_indices = internal_convert_to_tensor(
example_indices, name='example_indices', dtype=dtypes.int64)
self._feature_indices = internal_convert_to_tensor(
feature_indices, name='feature_indices', dtype=dtypes.int64)
self._feature_values = None
if feature_values is not None:
with name_scope(None, 'SparseFeatureColumn', [feature_values]):
self._feature_values = internal_convert_to_tensor(
feature_values, name='feature_values', dtype=dtypes.float32)
示例2: __init__
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def __init__(self, example_indices, feature_indices, feature_values):
"""Creates a `_SparseFeatureColumn` representation.
Args:
example_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts python
lists, or numpy arrays.
feature_indices: A 1-D int64 tensor of shape `[N]`. Also, accepts python
lists, or numpy arrays.
feature_values: An optional 1-D tensor float tensor of shape `[N]`. Also,
accepts python lists, or numpy arrays.
Returns:
A `_SparseFeatureColumn`
"""
with name_scope(None, 'SparseFeatureColumn',
[example_indices, feature_indices]):
self._example_indices = internal_convert_to_tensor(
example_indices, name='example_indices', dtype=tf.dtypes.int64)
self._feature_indices = internal_convert_to_tensor(
feature_indices, name='feature_indices', dtype=tf.dtypes.int64)
self._feature_values = None
if feature_values is not None:
with name_scope(None, 'SparseFeatureColumn', [feature_values]):
self._feature_values = internal_convert_to_tensor(
feature_values, name='feature_values', dtype=tf.dtypes.float32)
示例3: _convert_factored_tensor_to_tensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _convert_factored_tensor_to_tensor(value, *args, **kwargs):
# call ops.convert_to_tensor to handle optional arguments appropriately
return ops.internal_convert_to_tensor(value.to_tensor(), *args, **kwargs)
示例4: __init__
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def __init__(self, indices, values, dense_shape):
"""Creates a `SparseTensor`.
Args:
indices: A 2-D int64 tensor of shape `[N, ndims]`.
values: A 1-D tensor of any type and shape `[N]`.
dense_shape: A 1-D int64 tensor of shape `[ndims]`.
Returns:
A `SparseTensor`.
"""
with ops.name_scope(None, "SparseTensor",
[indices, values, dense_shape]):
indices = ops.convert_to_tensor(
indices, name="indices", dtype=dtypes.int64)
# Always pass as_ref=True because we want to be able to update
# values later if it is a VariableOp.
# TODO(touts): Consider adding mutable_values() when 'values'
# is a VariableOp and updating users of SparseTensor.
values = ops.internal_convert_to_tensor(
values, name="values", as_ref=True)
dense_shape = ops.convert_to_tensor(
dense_shape, name="dense_shape", dtype=dtypes.int64)
self._indices = indices
self._values = values
self._dense_shape = dense_shape
indices_shape = indices.get_shape().with_rank(2)
values_shape = values.get_shape().with_rank(1)
dense_shape_shape = dense_shape.get_shape().with_rank(1)
# Assert number of rows in indices match the number of elements in values.
indices_shape[0].merge_with(values_shape[0])
# Assert number of columns in indices matches the number of elements in
# dense_shape.
indices_shape[1].merge_with(dense_shape_shape[0])
示例5: convert_to_tensor_or_sparse_tensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def convert_to_tensor_or_sparse_tensor(value, dtype=None, name=None):
"""Converts value to a `SparseTensor` or `Tensor`.
Args:
value: A `SparseTensor`, `SparseTensorValue`, or an object whose type has a
registered `Tensor` conversion function.
dtype: Optional element type for the returned tensor. If missing, the
type is inferred from the type of `value`.
name: Optional name to use if a new `Tensor` is created.
Returns:
A `SparseTensor` or `Tensor` based on `value`.
Raises:
RuntimeError: If result type is incompatible with `dtype`.
"""
if dtype is not None:
dtype = dtypes.as_dtype(dtype)
if isinstance(value, SparseTensorValue):
value = SparseTensor.from_value(value)
if isinstance(value, SparseTensor):
if dtype and not dtype.is_compatible_with(value.dtype):
raise RuntimeError(
"Sparse dtype: requested = %s, actual = %s" % (
dtype.name, value.dtype.name))
return value
return ops.internal_convert_to_tensor(
value, dtype=dtype, name=name)
示例6: _convert_n_to_tensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _convert_n_to_tensor(self, input_list, as_ref=False):
"""Converts input list to a set of tensors."""
return [internal_convert_to_tensor(x, as_ref=as_ref) for x in input_list]
示例7: regularized_loss
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def regularized_loss(self, examples):
"""Add operations to compute the loss with regularization loss included.
Args:
examples: Examples to compute loss on.
Returns:
An Operation that computes mean (regularized) loss for given set of
examples.
Raises:
ValueError: if examples are not well defined.
"""
self._assertSpecified([
'example_labels', 'example_weights', 'sparse_features', 'dense_features'
], examples)
self._assertList(['sparse_features', 'dense_features'], examples)
with name_scope('sdca/regularized_loss'):
weights = internal_convert_to_tensor(examples['example_weights'])
return ((
self._l1_loss() +
# Note that here we are using the raw regularization
# (as specified by the user) and *not*
# self._symmetric_l2_regularization().
self._l2_loss(self._options['symmetric_l2_regularization'])) /
math_ops.reduce_sum(math_ops.cast(weights, dtypes.float64)) +
self.unregularized_loss(examples))
示例8: _convert_labeled_tensor_to_tensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _convert_labeled_tensor_to_tensor(value, *args, **kwargs):
# call ops.convert_to_tensor to handle optional arguments appropriately
return ops.internal_convert_to_tensor(value.tensor, *args, **kwargs)
示例9: _l1_loss
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _l1_loss(self):
"""Computes the (un-normalized) l1 loss of the model."""
with name_scope('sdca/l1_loss'):
sums = []
for name in ['sparse_features_weights', 'dense_features_weights']:
for var in self._variables[name]:
for v in self._var_to_list(var):
weights = internal_convert_to_tensor(v)
with tf.compat.v1.device(weights.device):
sums.append(
tf.math.reduce_sum(
tf.math.abs(tf.cast(weights, tf.dtypes.float64))))
# SDCA L1 regularization cost is: l1 * sum(|weights|)
return self._symmetric_l1_regularization() * tf.math.add_n(sums)
示例10: _l2_loss
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _l2_loss(self):
"""Computes the (un-normalized) l2 loss of the model."""
with name_scope('sdca/l2_loss'):
sums = []
for name in ['sparse_features_weights', 'dense_features_weights']:
for var in self._variables[name]:
for v in self._var_to_list(var):
weights = internal_convert_to_tensor(v)
with tf.compat.v1.device(weights.device):
sums.append(
tf.math.reduce_sum(
tf.math.square(tf.cast(weights, tf.dtypes.float64))))
# SDCA L2 regularization cost is: l2 * sum(weights^2) / 2
return self._symmetric_l2_regularization() * tf.math.add_n(sums) / 2.0
示例11: _convert_n_to_tensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _convert_n_to_tensor(self, input_list, as_ref=False):
"""Converts input list to a set of tensors."""
# input_list can be a list of Variables (that are implicitly partitioned),
# in which case the underlying logic in internal_convert_to_tensor will not
# concatenate the partitions together. This method takes care of the
# concatenating (we only allow partitioning on the first axis).
output_list = []
for x in input_list:
tensor_to_convert = x
if isinstance(x, list) or isinstance(x, var_ops.PartitionedVariable):
# We only allow for partitioning on the first axis.
tensor_to_convert = tf.concat(x, axis=0)
output_list.append(
internal_convert_to_tensor(tensor_to_convert, as_ref=as_ref))
return output_list
示例12: _convert_labeled_tensor_mock_to_tensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _convert_labeled_tensor_mock_to_tensor(value, *args, **kwargs):
return ops.internal_convert_to_tensor(value.tensor, *args, **kwargs)
示例13: args_to_matching_eager
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def args_to_matching_eager(l, ctx, default_dtype=None):
"""Convert sequence `l` to eager same-type Tensors."""
EagerTensor = ops.EagerTensor # pylint: disable=invalid-name
if all(isinstance(x, EagerTensor) for x in l):
return l[0].dtype, l
# TODO(josh11b): Could we do a better job if we also passed in the
# allowed dtypes when that was known?
# Is some input already a Tensor with a dtype?
dtype = None
for t in l:
if isinstance(t, EagerTensor):
dtype = t.dtype
break
internal_convert_to_tensor = ops.internal_convert_to_tensor
if dtype is None:
# Infer a dtype based on the first value, and use that dtype for the
# remaining values.
ret = []
for t in l:
ret.append(internal_convert_to_tensor(
t, dtype, preferred_dtype=default_dtype, ctx=ctx))
if dtype is None:
dtype = ret[-1].dtype
else:
ret = [internal_convert_to_tensor(t, dtype, ctx=ctx) for t in l]
return dtype, ret
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:31,代碼來源:execute.py
示例14: args_to_mixed_eager_tensors
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def args_to_mixed_eager_tensors(lists, ctx):
"""Converts a list of same-length lists of values to eager tensors."""
assert len(lists) > 1
# Generate an error if len(lists[i]) is not the same for all i.
lists_ret = []
for l in lists[1:]:
if len(l) != len(lists[0]):
raise ValueError(
"Expected list arguments to be the same length: %d != %d (%r vs. %r)."
% (len(lists[0]), len(l), lists[0], l))
lists_ret.append([])
# Convert the first element of each list first, then the second element, etc.
types = []
for i in range(len(lists[0])):
dtype = None
# If any list has a Tensor, use that dtype
for l in lists:
if isinstance(l[i], ops.EagerTensor):
dtype = l[i].dtype
break
if dtype is None:
# Convert the first one and use its dtype.
lists_ret[0].append(ops.internal_convert_to_tensor(lists[0][i], ctx=ctx))
dtype = lists_ret[0][i].dtype
for j in range(1, len(lists)):
lists_ret[j].append(
ops.internal_convert_to_tensor(lists[j][i], dtype=dtype, ctx=ctx))
else:
# Convert everything to the found dtype.
for j in range(len(lists)):
lists_ret[j].append(
ops.internal_convert_to_tensor(lists[j][i], dtype=dtype, ctx=ctx))
types.append(dtype)
return types, lists_ret
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:38,代碼來源:execute.py
示例15: _backprop_call
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import internal_convert_to_tensor [as 別名]
def _backprop_call(self, args):
"""Calls the wrapped function and records the result on a tape."""
all_args = args + self._extra_inputs
signature = self._forward_fdef.definition.signature
ctx = context.context()
if ctx.in_graph_mode():
g = ops.get_default_graph()
g._add_function(self._forward_fdef) # pylint: disable=protected-access
def make_tensor(x):
if isinstance(x, ops.Tensor):
return x
return ops.internal_convert_to_tensor(x, ctx=ctx)
op = g.create_op(
signature.name, [make_tensor(x) for x in all_args],
[dtypes.DType(x.type) for x in signature.output_arg],
op_def=signature,
name="FunctionCall",
compute_shapes=False)
outputs = op.outputs
outputs = [outputs] if isinstance(
outputs, (ops.Tensor, type(None))) else list(outputs)
for i, s in enumerate(self._output_shapes):
outputs[i].set_shape(s)
else:
outputs = execute.execute(
str(signature.name),
num_outputs=len(signature.output_arg),
inputs=all_args,
attrs=None,
ctx=ctx)
real_outputs = outputs[:len(self._returns)]
side_outputs = outputs[len(self._returns):]
tape.record_operation(
signature.name,
real_outputs,
(args + self._extra_inputs),
side_outputs,
self._backward_function)
return self._build_call_outputs(self._returns, real_outputs)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:43,代碼來源:function.py