當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.convert_n_to_tensor方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.ops.convert_n_to_tensor方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.convert_n_to_tensor方法的具體用法?Python ops.convert_n_to_tensor怎麽用?Python ops.convert_n_to_tensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops.convert_n_to_tensor方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: Assert

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import convert_n_to_tensor [as 別名]
def Assert(condition, data, summarize=None, name=None):
  """Asserts that the given condition is true.

  If `condition` evaluates to false, print the list of tensors in `data`.
  `summarize` determines how many entries of the tensors to print.

  NOTE: To ensure that Assert executes, one usually attaches a dependency:

  ```python
  # Ensure maximum element of x is smaller or equal to 1
  assert_op = tf.Assert(tf.less_equal(tf.reduce_max(x), 1.), [x])
  with tf.control_dependencies([assert_op]):
    ... code using x ...
  ```

  Args:
    condition: The condition to evaluate.
    data: The tensors to print out when condition is false.
    summarize: Print this many entries of each tensor.
    name: A name for this operation (optional).

  Returns:
    assert_op: An `Operation` that, when executed, raises a
    `tf.errors.InvalidArgumentError` if `condition` is not true.
  """
  with ops.name_scope(name, "Assert", [condition, data]) as name:
    xs = ops.convert_n_to_tensor(data)
    if all([x.dtype in {dtypes.string, dtypes.int32} for x in xs]):
      # As a simple heuristic, we assume that string and int32 are
      # on host to avoid the need to use cond. If it is not case,
      # we will pay the price copying the tensor to host memory.
      return gen_logging_ops._assert(
          condition, data, summarize, name="Assert")
    else:
      condition = ops.convert_to_tensor(condition, name="Condition")
      def true_assert():
        return gen_logging_ops._assert(
            condition, data, summarize, name="Assert")
      guarded_assert = cond(
          condition, no_op, true_assert, name="AssertGuard")
      return guarded_assert.op 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:43,代碼來源:control_flow_ops.py

示例2: testFloat

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import convert_n_to_tensor [as 別名]
def testFloat(self):
    np.random.seed(12345)
    x = [np.random.random((1, 2, 3, 4, 5)) - 0.5 for _ in range(5)]
    tf_x = ops.convert_n_to_tensor(x)
    with self.test_session(use_gpu=True):
      self.assertAllClose(sum(x), math_ops.accumulate_n(tf_x).eval())
      self.assertAllClose(x[0] * 5, math_ops.accumulate_n([tf_x[0]] * 5).eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:math_ops_test.py

示例3: testInt

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import convert_n_to_tensor [as 別名]
def testInt(self):
    np.random.seed(54321)
    x = [np.random.randint(-128, 128, (5, 4, 3, 2, 1)) for _ in range(6)]
    tf_x = ops.convert_n_to_tensor(x)
    with self.test_session(use_gpu=True):
      self.assertAllEqual(sum(x), math_ops.accumulate_n(tf_x).eval())
      self.assertAllEqual(x[0] * 6, math_ops.accumulate_n([tf_x[0]] * 6).eval()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:math_ops_test.py

示例4: Assert

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import convert_n_to_tensor [as 別名]
def Assert(condition, data, summarize=None, name=None):
  """Asserts that the given condition is true.

  If `condition` evaluates to false, print the list of tensors in `data`.
  `summarize` determines how many entries of the tensors to print.

  NOTE: To ensure that Assert executes, one usually attaches a dependency:

  ```python
   # Ensure maximum element of x is smaller or equal to 1
  assert_op = tf.Assert(tf.less_equal(tf.reduce_max(x), 1.), [x])
  x = tf.with_dependencies([assert_op], x)
  ```

  Args:
    condition: The condition to evaluate.
    data: The tensors to print out when condition is false.
    summarize: Print this many entries of each tensor.
    name: A name for this operation (optional).

  Returns:
    assert_op: An `Operation` that, when executed, raises a
    `tf.errors.InvalidArgumentError` if `condition` is not true.
  """
  with ops.name_scope(name, "Assert", [condition, data]) as name:
    xs = ops.convert_n_to_tensor(data)
    if all([x.dtype in {dtypes.string, dtypes.int32} for x in xs]):
      # As a simple heuristic, we assume that string and int32 are
      # on host to avoid the need to use cond. If it is not case,
      # we will pay the price copying the tensor to host memory.
      return gen_logging_ops._assert(
          condition, data, summarize, name="Assert")
    else:
      condition = ops.convert_to_tensor(condition, name="Condition")
      def true_assert():
        return gen_logging_ops._assert(
            condition, data, summarize, name="Assert")
      guarded_assert = cond(
          condition, no_op, true_assert, name="AssertGuard")
      return guarded_assert.op 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:42,代碼來源:control_flow_ops.py

示例5: _merge_summary

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import convert_n_to_tensor [as 別名]
def _merge_summary(inputs, name=None):
  r"""Merges summaries.

  This op creates a
  [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto)
  protocol buffer that contains the union of all the values in the input
  summaries.

  When the Op is run, it reports an `InvalidArgument` error if multiple values
  in the summaries to merge use the same tag.

  Args:
    inputs: A list of at least 1 `Tensor` objects with type `string`.
      Can be of any shape.  Each must contain serialized `Summary` protocol
      buffers.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `string`. Scalar. Serialized `Summary` protocol buffer.
  """
  if not isinstance(inputs, (list, tuple)):
    raise TypeError(
        "Expected list for 'inputs' argument to "
        "'merge_summary' Op, not %r." % inputs)
  _attr_N = len(inputs)
  _ctx = _context.context()
  if _ctx.in_graph_mode():
    _, _, _op = _op_def_lib._apply_op_helper(
        "MergeSummary", inputs=inputs, name=name)
    _result = _op.outputs[:]
    _inputs_flat = _op.inputs
    _attrs = ("N", _op.get_attr("N"))
  else:
    inputs = _ops.convert_n_to_tensor(inputs, _dtypes.string)
    _inputs_flat = list(inputs)
    _attrs = ("N", _attr_N)
    _result = _execute.execute(b"MergeSummary", 1, inputs=_inputs_flat,
                               attrs=_attrs, ctx=_ctx, name=name)
  _execute.record_gradient(
      "MergeSummary", _inputs_flat, _attrs, _result, name)
  _result, = _result
  return _result 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:44,代碼來源:gen_logging_ops.py

示例6: padded_batch_dataset

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import convert_n_to_tensor [as 別名]
def padded_batch_dataset(input_dataset, batch_size, padded_shapes, padding_values, output_shapes, name=None):
  r"""Creates a dataset that batches and pads `batch_size` elements from the input.

  Args:
    input_dataset: A `Tensor` of type `variant`.
    batch_size: A `Tensor` of type `int64`.
      A scalar representing the number of elements to accumulate in a
      batch.
    padded_shapes: A list of at least 1 `Tensor` objects with type `int64`.
      A list of int64 tensors representing the desired padded shapes
      of the corresponding output components. These shapes may be partially
      specified, using `-1` to indicate that a particular dimension should be
      padded to the maximum size of all batch elements.
    padding_values: A list of `Tensor` objects.
      A list of scalars containing the padding value to use for
      each of the outputs.
    output_shapes: A list of shapes (each a `tf.TensorShape` or list of `ints`) that has length `>= 1`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `variant`.
  """
  if not isinstance(padded_shapes, (list, tuple)):
    raise TypeError(
        "Expected list for 'padded_shapes' argument to "
        "'padded_batch_dataset' Op, not %r." % padded_shapes)
  _attr_N = len(padded_shapes)
  if not isinstance(output_shapes, (list, tuple)):
    raise TypeError(
        "Expected list for 'output_shapes' argument to "
        "'padded_batch_dataset' Op, not %r." % output_shapes)
  output_shapes = [_execute.make_shape(_s, "output_shapes") for _s in output_shapes]
  _ctx = _context.context()
  if _ctx.in_graph_mode():
    _, _, _op = _op_def_lib._apply_op_helper(
        "PaddedBatchDataset", input_dataset=input_dataset,
        batch_size=batch_size, padded_shapes=padded_shapes,
        padding_values=padding_values, output_shapes=output_shapes, name=name)
    _result = _op.outputs[:]
    _inputs_flat = _op.inputs
    _attrs = ("Toutput_types", _op.get_attr("Toutput_types"), "output_shapes",
              _op.get_attr("output_shapes"), "N", _op.get_attr("N"))
  else:
    _attr_Toutput_types, padding_values = _execute.convert_to_mixed_eager_tensors(padding_values, _ctx)
    _attr_Toutput_types = [_t.as_datatype_enum for _t in _attr_Toutput_types]
    input_dataset = _ops.convert_to_tensor(input_dataset, _dtypes.variant)
    batch_size = _ops.convert_to_tensor(batch_size, _dtypes.int64)
    padded_shapes = _ops.convert_n_to_tensor(padded_shapes, _dtypes.int64)
    _inputs_flat = [input_dataset, batch_size] + list(padded_shapes) + list(padding_values)
    _attrs = ("Toutput_types", _attr_Toutput_types, "output_shapes",
              output_shapes, "N", _attr_N)
    _result = _execute.execute(b"PaddedBatchDataset", 1, inputs=_inputs_flat,
                               attrs=_attrs, ctx=_ctx, name=name)
  _execute.record_gradient(
      "PaddedBatchDataset", _inputs_flat, _attrs, _result, name)
  _result, = _result
  return _result 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:59,代碼來源:gen_dataset_ops.py

示例7: zip_dataset

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import convert_n_to_tensor [as 別名]
def zip_dataset(input_datasets, output_types, output_shapes, name=None):
  r"""Creates a dataset that zips together `input_datasets`.

  Args:
    input_datasets: A list of at least 1 `Tensor` objects with type `variant`.
    output_types: A list of `tf.DTypes` that has length `>= 1`.
    output_shapes: A list of shapes (each a `tf.TensorShape` or list of `ints`) that has length `>= 1`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `variant`.
  """
  if not isinstance(input_datasets, (list, tuple)):
    raise TypeError(
        "Expected list for 'input_datasets' argument to "
        "'zip_dataset' Op, not %r." % input_datasets)
  _attr_N = len(input_datasets)
  if not isinstance(output_types, (list, tuple)):
    raise TypeError(
        "Expected list for 'output_types' argument to "
        "'zip_dataset' Op, not %r." % output_types)
  output_types = [_execute.make_type(_t, "output_types") for _t in output_types]
  if not isinstance(output_shapes, (list, tuple)):
    raise TypeError(
        "Expected list for 'output_shapes' argument to "
        "'zip_dataset' Op, not %r." % output_shapes)
  output_shapes = [_execute.make_shape(_s, "output_shapes") for _s in output_shapes]
  _ctx = _context.context()
  if _ctx.in_graph_mode():
    _, _, _op = _op_def_lib._apply_op_helper(
        "ZipDataset", input_datasets=input_datasets,
        output_types=output_types, output_shapes=output_shapes, name=name)
    _result = _op.outputs[:]
    _inputs_flat = _op.inputs
    _attrs = ("output_types", _op.get_attr("output_types"), "output_shapes",
              _op.get_attr("output_shapes"), "N", _op.get_attr("N"))
  else:
    input_datasets = _ops.convert_n_to_tensor(input_datasets, _dtypes.variant)
    _inputs_flat = list(input_datasets)
    _attrs = ("output_types", output_types, "output_shapes", output_shapes,
              "N", _attr_N)
    _result = _execute.execute(b"ZipDataset", 1, inputs=_inputs_flat,
                               attrs=_attrs, ctx=_ctx, name=name)
  _execute.record_gradient(
      "ZipDataset", _inputs_flat, _attrs, _result, name)
  _result, = _result
  return _result 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:49,代碼來源:gen_dataset_ops.py

示例8: string_join

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import convert_n_to_tensor [as 別名]
def string_join(inputs, separator="", name=None):
  r"""Joins the strings in the given list of string tensors into one tensor;

  with the given separator (default is an empty separator).

  Args:
    inputs: A list of at least 1 `Tensor` objects with type `string`.
      A list of string tensors.  The tensors must all have the same shape,
      or be scalars.  Scalars may be mixed in; these will be broadcast to the shape
      of non-scalar inputs.
    separator: An optional `string`. Defaults to `""`.
      string, an optional join separator.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` of type `string`.
  """
  if not isinstance(inputs, (list, tuple)):
    raise TypeError(
        "Expected list for 'inputs' argument to "
        "'string_join' Op, not %r." % inputs)
  _attr_N = len(inputs)
  if separator is None:
    separator = ""
  separator = _execute.make_str(separator, "separator")
  _ctx = _context.context()
  if _ctx.in_graph_mode():
    _, _, _op = _op_def_lib._apply_op_helper(
        "StringJoin", inputs=inputs, separator=separator, name=name)
    _result = _op.outputs[:]
    _inputs_flat = _op.inputs
    _attrs = ("N", _op.get_attr("N"), "separator", _op.get_attr("separator"))
  else:
    inputs = _ops.convert_n_to_tensor(inputs, _dtypes.string)
    _inputs_flat = list(inputs)
    _attrs = ("N", _attr_N, "separator", separator)
    _result = _execute.execute(b"StringJoin", 1, inputs=_inputs_flat,
                               attrs=_attrs, ctx=_ctx, name=name)
  _execute.record_gradient(
      "StringJoin", _inputs_flat, _attrs, _result, name)
  _result, = _result
  return _result 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:44,代碼來源:gen_string_ops.py


注:本文中的tensorflow.python.framework.ops.convert_n_to_tensor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。