當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.colocate_with方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.ops.colocate_with方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.colocate_with方法的具體用法?Python ops.colocate_with怎麽用?Python ops.colocate_with使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.ops的用法示例。


在下文中一共展示了ops.colocate_with方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _finish

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def _finish(self, update_ops, name_scope):
        # Update the power accumulators.
        with ops.control_dependencies(update_ops):
            with ops.colocate_with(self._iterations):
                update_beta1 = self._beta1_power.assign(
                    self._beta1_power * self._beta1_t,
                    use_locking=self._use_locking)
                update_beta2 = self._beta2_power.assign(
                    self._beta2_power * self._beta2_t,
                    use_locking=self._use_locking)
                t = self._iterations + 1.
                update_iterations = self._iterations.assign(t, use_locking=self._use_locking)
                momentum_cache_power = self._get_momentum_cache(self._schedule_decay_t, t)
                momentum_cache_t = self._beta1_t * (1. - 0.5 * momentum_cache_power)
                update_m_schedule = self._m_schedule.assign(
                    self._m_schedule * momentum_cache_t,
                    use_locking=self._use_locking)
        return control_flow_ops.group(
            *update_ops + [update_beta1, update_beta2] + [update_iterations, update_m_schedule],
            name=name_scope) 
開發者ID:ChenglongChen,項目名稱:tensorflow-XNN,代碼行數:22,代碼來源:optimizer.py

示例2: _create_slots

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def _create_slots(self, var_list):
        first_var = min(var_list, key=lambda x: x.name)

        create_new = self._beta1_power is None
        if not create_new and context.in_graph_mode():
            create_new = (self._beta1_power.graph is not first_var.graph)

        if create_new:
            with ops.colocate_with(first_var):
                self._beta1_power = variable_scope.variable(
                    self._beta1, name="beta1_power", trainable=False)
                self._beta2_power = variable_scope.variable(
                    self._beta2, name="beta2_power", trainable=False)
        # Create slots for the first and second moments.
        for v in var_list:
            self._zeros_slot(v, "m", self._name)
            self._zeros_slot(v, "v", self._name)
            self._zeros_slot(v, "vhat", self._name) 
開發者ID:imsb-uke,項目名稱:scGAN,代碼行數:20,代碼來源:AMSGrad.py

示例3: _MultiDeviceAddN

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def _MultiDeviceAddN(tensor_list):
  """Adds tensors from potentially multiple devices."""
  # Basic function structure comes from control_flow_ops.group().
  # Sort tensors according to their devices.
  tensors_on_device = collections.defaultdict(lambda: [])
  for tensor in tensor_list:
    tensors_on_device[tensor.device].append(tensor)

  # For each device, add the tensors on that device first.
  # Then gather the partial sums from multiple devices.
  # TODO(sjhwang): Create hierarchical aggregation tree as pbar's suggestion.
  # E.g., aggregate per GPU, then per task, and so on.
  summands = []

  def DeviceKey(dev):
    return "" if dev is None else dev

  for dev in sorted(six.iterkeys(tensors_on_device), key=DeviceKey):
    tensors = tensors_on_device[dev]
    with ops.colocate_with(tensors[0].op, ignore_existing=True):
      summands.append(math_ops.add_n(tensors))

  return math_ops.add_n(summands) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:gradients_impl.py

示例4: _maybe_colocate_with

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def _maybe_colocate_with(self, value):
    """Colocate operations with an internal colocation group or `value`.

    Args:
      value: `Tensor`, the tensor to try to colocate with.

    Yields:
      Does not yield anything, but the new context is a colocation context.

    If no internal colocation group is set, colocate with `value` and set
    the internal colocation group to be value.
    """
    if not self._colocate_with_first_write_call:
      yield
    else:
      if not self._colocate_with:
        self._colocate_with.append(value)
      with ops.colocate_with(self._colocate_with[0]):
        yield 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:tensor_array_ops.py

示例5: grad

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def grad(self, source, flow=None, name=None):
    # tensor_array_grad requires a flow input when forward
    # TensorArrays are dynamically sized.  This forces the creation
    # of the grad TensorArray only once the final forward array's size
    # is fixed.
    if flow is None:
      flow = self.flow
    with ops.name_scope(name, "TensorArrayGrad", [self._handle]):
      with ops.colocate_with(self._handle):
        g_handle, unused_flow = gen_data_flow_ops._tensor_array_grad_v3(
            handle=self._handle, source=source, flow_in=flow, name=name)
        with ops.control_dependencies([g_handle]):
          flow = array_ops.identity(flow, name="gradient_flow")
        g = TensorArray(
            dtype=self._dtype,
            handle=g_handle,
            flow=flow,
            infer_shape=self._infer_shape,
            colocate_with_first_write_call=False)
        g._element_shape = self._element_shape
        return g 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:tensor_array_ops.py

示例6: _MatrixSetDiagGrad

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def _MatrixSetDiagGrad(op, grad):
  """Gradient for MatrixSetDiag."""
  input_shape = op.inputs[0].get_shape().merge_with(grad.get_shape())
  diag_shape = op.inputs[1].get_shape()
  batch_shape = input_shape[:-2].merge_with(diag_shape[:-1])
  matrix_shape = input_shape[-2:]
  if batch_shape.is_fully_defined() and matrix_shape.is_fully_defined():
    diag_shape = batch_shape.as_list() + [min(matrix_shape.as_list())]
  else:
    with ops.colocate_with(grad):
      grad_shape = array_ops.shape(grad)
      grad_rank = array_ops.rank(grad)
      batch_shape = array_ops.slice(grad_shape, [0], [grad_rank - 2])
      matrix_shape = array_ops.slice(grad_shape, [grad_rank - 2], [2])
      min_dim = math_ops.reduce_min(matrix_shape)
      diag_shape = array_ops.concat([batch_shape, [min_dim]], 0)
  grad_input = array_ops.matrix_set_diag(
      grad, array_ops.zeros(
          diag_shape, dtype=grad.dtype))
  grad_diag = array_ops.matrix_diag_part(grad)
  return (grad_input, grad_diag) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:array_grad.py

示例7: MaybeCreateControlFlowState

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def MaybeCreateControlFlowState(between_op_list, between_ops,
                                colocate_gradients_with_ops):
  """Create the state for all the while loops involved in one gradients().

  We create a ControlFlowState when there are while loops involved in
  gradients(). In gradients(), control flow logic is only invoked when
  the ControlFlowState is not None.

  Note that this method modifies `between_op_list` and `between_ops`.
  """
  loop_state = None
  for op in between_op_list:
    if IsLoopExit(op):
      if loop_state is None:
        loop_state = ControlFlowState()
      if colocate_gradients_with_ops:
        with ops.colocate_with(op):
          loop_state.AddWhileContext(op, between_op_list, between_ops)
      else:
        loop_state.AddWhileContext(op, between_op_list, between_ops)
  return loop_state 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:control_flow_ops.py

示例8: verify_tensor_all_finite

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def verify_tensor_all_finite(t, msg, name=None):
  """Assert that the tensor does not contain any NaN's or Inf's.

  Args:
    t: Tensor to check.
    msg: Message to log on failure.
    name: A name for this operation (optional).

  Returns:
    Same tensor as `t`.
  """
  with ops.name_scope(name, "VerifyFinite", [t]) as name:
    t = ops.convert_to_tensor(t, name="t")
    with ops.colocate_with(t):
      verify_input = array_ops.check_numerics(t, message=msg)
      out = control_flow_ops.with_dependencies([verify_input], t)
  return out 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:numerics.py

示例9: _create_slots

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def _create_slots(self, var_list):
    # Create the beta1 and beta2 accumulators on the same device as the first
    # variable.
    if (self._beta1_power is None or
        self._beta1_power.graph is not var_list[0].graph):
      with ops.colocate_with(var_list[0]):
        self._beta1_power = variable_scope.variable(self._beta1,
                                                    name="beta1_power",
                                                    trainable=False)
        self._beta2_power = variable_scope.variable(self._beta2,
                                                    name="beta2_power",
                                                    trainable=False)
    # Create slots for the first and second moments.
    for v in var_list:
      self._zeros_slot(v, "m", self._name)
      self._zeros_slot(v, "v", self._name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:adam.py

示例10: _compute_euclidean_distance

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def _compute_euclidean_distance(cls, inputs, clusters):
    """Computes Euclidean distance between each input and each cluster center.

    Args:
      inputs: list of input Tensors.
      clusters: cluster Tensor.

    Returns:
      list of Tensors, where each element corresponds to each element in inputs.
      The value is the distance of each row to all the cluster centers.
    """
    output = []
    for inp in inputs:
      with ops.colocate_with(inp):
        # Computes Euclidean distance. Note the first and third terms are
        # broadcast additions.
        squared_distance = (math_ops.reduce_sum(
            math_ops.square(inp), 1, keep_dims=True) - 2 * math_ops.matmul(
                inp, clusters, transpose_b=True) + array_ops.transpose(
                    math_ops.reduce_sum(
                        math_ops.square(clusters), 1, keep_dims=True)))
        output.append(squared_distance)

    return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:clustering_ops.py

示例11: _compute_cosine_distance

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def _compute_cosine_distance(cls, inputs, clusters, inputs_normalized=True):
    """Computes cosine distance between each input and each cluster center.

    Args:
      inputs: list of input Tensor.
      clusters: cluster Tensor
      inputs_normalized: if True, it assumes that inp and clusters are
      normalized and computes the dot product which is equivalent to the cosine
      distance. Else it L2 normalizes the inputs first.

    Returns:
      list of Tensors, where each element corresponds to each element in inp.
      The value is the distance of each row to all the cluster centers.
    """
    output = []
    if not inputs_normalized:
      with ops.colocate_with(clusters):
        clusters = nn_impl.l2_normalize(clusters, dim=1)
    for inp in inputs:
      with ops.colocate_with(inp):
        if not inputs_normalized:
          inp = nn_impl.l2_normalize(inp, dim=1)
        output.append(1 - math_ops.matmul(inp, clusters, transpose_b=True))
    return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:clustering_ops.py

示例12: _prepare_gramian

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def _prepare_gramian(self, factors, gramian):
    """Helper function to create ops to prepare/calculate gramian.

    Args:
      factors: Variable or list of Variable representing (sharded) factors.
        Used to compute the updated corresponding gramian value.
      gramian: Variable storing the gramian calculated from the factors.

    Returns:
      A op that updates the gramian with the calcuated value from the factors.
    """
    partial_gramians = []
    for f in factors:
      with ops.colocate_with(f):
        partial_gramians.append(math_ops.matmul(f, f, transpose_a=True))

    with ops.colocate_with(gramian):
      prep_gramian = state_ops.assign(gramian,
                                      math_ops.add_n(partial_gramians)).op

    return prep_gramian 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:factorization_ops.py

示例13: scatter_update

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def scatter_update(cls, factor, indices, values, sharding_func, name=None):
    """Helper function for doing sharded scatter update."""
    assert isinstance(factor, list)
    if len(factor) == 1:
      with ops.colocate_with(factor[0]):
        # TODO(agarwal): assign instead of scatter update for full batch update.
        return state_ops.scatter_update(factor[0], indices, values,
                                        name=name).op
    else:
      num_shards = len(factor)
      assignments, new_ids = sharding_func(indices)
      assert assignments is not None
      assignments = math_ops.cast(assignments, dtypes.int32)
      sharded_ids = data_flow_ops.dynamic_partition(new_ids, assignments,
                                                    num_shards)
      sharded_values = data_flow_ops.dynamic_partition(values, assignments,
                                                       num_shards)
      updates = []
      for i in xrange(num_shards):
        updates.append(state_ops.scatter_update(factor[i], sharded_ids[i],
                                                sharded_values[i]))
      return control_flow_ops.group(*updates, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:factorization_ops.py

示例14: _clip_sparse

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def _clip_sparse(self, grad, var):
    assert isinstance(grad, ops.IndexedSlices)
    clip_dims = self._vars_to_clip_dims[var]
    if 0 in clip_dims:
      logging.warning("Clipping norm across dims %s for %s is inefficient "
                      "when including sparse dimension 0.", clip_dims,
                      var.op.name)
      return self._clip_dense(var)

    with ops.colocate_with(var):
      var_subset = array_ops.gather(var, grad.indices)
    with self._maybe_colocate_with(var):
      normalized_var_subset = clip_ops.clip_by_norm(
          var_subset, self._max_norm, clip_dims)
      delta = ops.IndexedSlices(
          var_subset - normalized_var_subset, grad.indices, grad.dense_shape)
    with ops.colocate_with(var):
      return var.scatter_sub(delta, use_locking=self._use_locking) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:variable_clipping_optimizer.py

示例15: grad

# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate_with [as 別名]
def grad(self, source, flow=None, name=None):
    # tensor_array_grad requires a flow input when forward
    # TensorArrays are dynamically sized.  This forces the creation
    # of the grad TensorArray only once the final forward array's size
    # is fixed.
    if flow is None:
      flow = self.flow
    with ops.name_scope(name, "TensorArrayGrad", [self._handle]):
      with ops.colocate_with(self._handle):
        g_handle, unused_flow = gen_data_flow_ops._tensor_array_grad_v3(
            handle=self._handle, source=source, flow_in=flow, name=name)
        with ops.control_dependencies([g_handle]):
          flow = array_ops.identity(flow, name="gradient_flow")
        g = TensorArray(
            dtype=self._dtype,
            handle=g_handle,
            flow=flow,
            infer_shape=self._infer_shape)
        g._element_shape = self._element_shape
        return g 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:22,代碼來源:tensor_array_ops.py


注:本文中的tensorflow.python.framework.ops.colocate_with方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。