本文整理匯總了Python中tensorflow.python.framework.ops.colocate方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.colocate方法的具體用法?Python ops.colocate怎麽用?Python ops.colocate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.ops
的用法示例。
在下文中一共展示了ops.colocate方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _SwitchRefOrTensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate [as 別名]
def _SwitchRefOrTensor(data, pred, name="Switch"):
"""Forwards `data` to an output determined by `pred`.
If `pred` is false, the `data` input is forwared to the first output.
Otherwise, the data goes to the second output.
This op handles `Tensor`s and `IndexedSlices`.
Args:
data: The tensor to be forwarded to the appropriate output.
pred: A scalar that specifies which output port will receive data.
name: A name for this operation (optional).
Returns:
`(output_false, output_true)`: If `pred` is true, data will be forwarded to
`output_true`, otherwise it goes to `output_false`.
Raises:
TypeError: if data is not a Tensor or IndexedSlices
"""
data = ops.convert_to_tensor_or_indexed_slices(data, name="data")
# NOTE(vrv): ops.colocate_with(data, ignore_existing=True) below
# addresses the following scenario.
#
# Assume you execute Optimizer.apply_gradients() in a branch of a cond().
#
# 1. The update op is created inside a `with ops.colocate(var):` block
#
# 2. Some tensor `data` is captured and a switch is created in a
# `with ops.colocate_with(data):` block.
#
# with ops.colocate_with(var):
# with ops.colocate_with(data):
# op = ...
#
# var and data may be pinned to different devices, so we want to ops
# created within ops.colocate_with(data) to ignore the existing stack.
with ops.colocate_with(data, ignore_existing=True):
if isinstance(data, ops.Tensor):
if data.dtype._is_ref_dtype: # pylint: disable=protected-access
return ref_switch(data, pred, name=name)
return switch(data, pred, name=name)
示例2: _SwitchRefOrTensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate [as 別名]
def _SwitchRefOrTensor(data, pred, name="Switch"):
"""Forwards `data` to an output determined by `pred`.
If `pred` is true, the `data` input is forwared to the first output.
Otherwise, the data goes to the second output.
This op handles `Tensor`s and `IndexedSlices`.
Args:
data: The tensor to be forwarded to the appropriate output.
pred: A scalar that specifies which output port will receive data.
name: A name for this operation (optional).
Returns:
`(output_false, output_false)`: If `pred` is true, data will be forwarded to
`output_true`, otherwise it goes to `output_false`.
Raises:
TypeError: if data is not a Tensor or IndexedSlices
"""
data = ops.convert_to_tensor_or_indexed_slices(data, name="data")
# NOTE(vrv): ops.colocate_with(data, ignore_existing=True) below
# addresses the following scenario.
#
# Assume you execute Optimizer.apply_gradients() in a branch of a cond().
#
# 1. The update op is created inside a `with ops.colocate(var):` block
#
# 2. Some tensor `data` is captured and a switch is created in a
# `with ops.colocate_with(data):` block.
#
# with ops.colocate_with(var):
# with ops.colocate_with(data):
# op = ...
#
# var and data may be pinned to different devices, so we want to ops
# created within ops.colocate_with(data) to ignore the existing stack.
with ops.colocate_with(data, ignore_existing=True):
if isinstance(data, ops.Tensor):
if data.dtype._is_ref_dtype: # pylint: disable=protected-access
return ref_switch(data, pred, name=name)
return switch(data, pred, name=name)
示例3: _SwitchRefOrTensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate [as 別名]
def _SwitchRefOrTensor(data, pred, name="Switch"):
"""Forwards `data` to an output determined by `pred`.
If `pred` is true, the `data` input is forwared to the first output.
Otherwise, the data goes to the second output.
This op handles `Tensor`s and `IndexedSlices`.
Args:
data: The tensor to be forwarded to the appropriate output.
pred: A scalar that specifies which output port will receive data.
name: A name for this operation (optional).
Returns:
`(output_false, output_false)`: If `pred` is true, data will be forwarded to
`output_true`, otherwise it goes to `output_false`.
Raises:
TypeError: if data is not a Tensor or IndexedSlices
"""
data = ops.convert_to_tensor_or_indexed_slices(data, name="data")
# NOTE(vrv): ops.colocate_with(data, ignore_existing=True) below
# addresses the following scenario.
#
# Assume you execute Optimizer.apply_gradients() in a branch of a cond().
#
# 1. The update op is created inside a `with ops.colocate(var):` block
#
# 2. Some tensor `data` is captured and a switch is created in a
# `with ops.colocate_with(data):` block.
#
# with ops.colocate_with(var):
# with ops.colocate_with(data):
# op = ...
#
# var and data may be pinned to different devices, so we want to ops
# created within ops.colocate_with(data) to ignore the existing stack.
with ops.colocate_with(data, ignore_existing=True):
if isinstance(data, ops.Tensor):
if data.dtype.is_ref_dtype:
return ref_switch(data, pred, name=name)
return switch(data, pred, name=name)
示例4: _SwitchRefOrTensor
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import colocate [as 別名]
def _SwitchRefOrTensor(data, pred, name="Switch"):
"""Forwards `data` to an output determined by `pred`.
If `pred` is false, the `data` input is forwarded to the first output.
Otherwise, the data goes to the second output.
This op handles `Tensor`s and `IndexedSlices`.
Args:
data: The tensor to be forwarded to the appropriate output.
pred: A scalar that specifies which output port will receive data.
name: A name for this operation (optional).
Returns:
`(output_false, output_true)`: If `pred` is true, data will be forwarded to
`output_true`, otherwise it goes to `output_false`.
Raises:
TypeError: if data is not a Tensor or IndexedSlices
"""
data = ops.convert_to_tensor_or_indexed_slices(data, name="data")
# NOTE(vrv): ops.colocate_with(data, ignore_existing=True) below
# addresses the following scenario.
#
# Assume you execute Optimizer.apply_gradients() in a branch of a cond().
#
# 1. The update op is created inside a `with ops.colocate(var):` block
#
# 2. Some tensor `data` is captured and a switch is created in a
# `with ops.colocate_with(data):` block.
#
# with ops.colocate_with(var):
# with ops.colocate_with(data):
# op = ...
#
# var and data may be pinned to different devices, so we want to ops
# created within ops.colocate_with(data) to ignore the existing stack.
with ops.colocate_with(data, ignore_existing=True):
if isinstance(data, ops.Tensor):
if data.dtype._is_ref_dtype: # pylint: disable=protected-access
return ref_switch(data, pred, name=name)
return switch(data, pred, name=name)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:44,代碼來源:control_flow_ops.py