本文整理匯總了Python中tensorflow.python.framework.ops.add_to_collection方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.add_to_collection方法的具體用法?Python ops.add_to_collection怎麽用?Python ops.add_to_collection使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.ops
的用法示例。
在下文中一共展示了ops.add_to_collection方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _init_init_op
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def _init_init_op(self, init_op=USE_DEFAULT, init_feed_dict=None):
"""Initializes init_op.
Args:
init_op: `Operation` to initialize the variables. If set to USE_DEFAULT,
create an op that initializes all variables and tables.
init_feed_dict: A dictionary that maps `Tensor` objects to feed values.
This feed dictionary will be used when `init_op` is evaluated.
"""
if init_op is Supervisor.USE_DEFAULT:
init_op = self._get_first_op_from_collection(ops.GraphKeys.INIT_OP)
if init_op is None:
init_op = variables.global_variables_initializer()
ops.add_to_collection(ops.GraphKeys.INIT_OP, init_op)
self._init_op = init_op
self._init_feed_dict = init_feed_dict
示例2: _init_local_init_op
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def _init_local_init_op(self, local_init_op=USE_DEFAULT):
"""Initializes local_init_op.
Args:
local_init_op: `Operation` run for every new supervisor instance. If set
to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP
collection. If the collection is empty, create an op that initializes
all local variables and all tables.
"""
if local_init_op is Supervisor.USE_DEFAULT:
local_init_op = self._get_first_op_from_collection(
ops.GraphKeys.LOCAL_INIT_OP)
if local_init_op is None:
op_list = [
variables.local_variables_initializer(),
lookup_ops.tables_initializer()
]
if op_list:
local_init_op = control_flow_ops.group(*op_list)
ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op)
self._local_init_op = local_init_op
示例3: register_resource
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def register_resource(handle, create_op, is_initialized_op, is_shared=True):
"""Registers a resource into the appropriate collections.
This makes the resource findable in either the shared or local resources
collection.
Args:
handle: op which returns a handle for the resource.
create_op: op which initializes the resource.
is_initialized_op: op which returns a scalar boolean tensor of whether
the resource has been initialized.
is_shared: if True, the resource gets added to the shared resource
collection; otherwise it gets added to the local resource collection.
"""
resource = _Resource(handle, create_op, is_initialized_op)
if is_shared:
ops.add_to_collection(ops.GraphKeys.RESOURCES, resource)
else:
ops.add_to_collection(ops.GraphKeys.LOCAL_RESOURCES, resource)
示例4: get_summary_op
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def get_summary_op():
"""Returns a single Summary op that would run all summaries.
Either existing one from `SUMMARY_OP` collection or merges all existing
summaries.
Returns:
If no summaries were collected, returns None. Otherwise returns a scalar
`Tensor` of type `string` containing the serialized `Summary` protocol
buffer resulting from the merging.
"""
summary_op = ops.get_collection(ops.GraphKeys.SUMMARY_OP)
if summary_op is not None:
if summary_op:
summary_op = summary_op[0]
else:
summary_op = None
if summary_op is None:
summary_op = merge_all_summaries()
if summary_op is not None:
ops.add_to_collection(ops.GraphKeys.SUMMARY_OP, summary_op)
return summary_op
示例5: initialize
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def initialize(self, table):
"""Initializes the given `table` with `keys` and `values` tensors.
Args:
table: The table to initialize.
Returns:
The operation that initializes the table.
Raises:
TypeError: when the keys and values data types do not match the table
key and value data types.
"""
_check_table_dtypes(table, self._keys.dtype, self._values.dtype)
with ops.name_scope(
self._name, values=(table.table_ref, self._keys,
self._values)) as scope:
# pylint: disable=protected-access
init_op = gen_lookup_ops._initialize_table_v2(
table.table_ref, self._keys, self._values, name=scope)
# pylint: enable=protected-access
ops.add_to_collection(ops.GraphKeys.TABLE_INITIALIZERS, init_op)
return init_op
示例6: _get_saver_or_default
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def _get_saver_or_default():
"""Returns the saver from SAVERS collection, or creates a default one.
This method is used by other members of the training module, such as
`Scaffold`, or `CheckpointSaverHook`.
Returns:
`Saver`.
Raises:
RuntimeError: If the SAVERS collection already has more than one items.
"""
collection_key = ops.GraphKeys.SAVERS
savers = ops.get_collection(collection_key)
if savers:
if len(savers) > 1:
raise RuntimeError(
"More than one item in collection {}. "
"Please indicate which one to use by passing it to the constructor.".
format(collection_key))
return savers[0]
saver = Saver(sharded=True, allow_empty=True)
if saver is not None:
ops.add_to_collection(collection_key, saver)
return saver
示例7: add_queue_runner
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def add_queue_runner(qr, collection=ops.GraphKeys.QUEUE_RUNNERS):
"""Adds a `QueueRunner` to a collection in the graph.
When building a complex model that uses many queues it is often difficult to
gather all the queue runners that need to be run. This convenience function
allows you to add a queue runner to a well known collection in the graph.
The companion method `start_queue_runners()` can be used to start threads for
all the collected queue runners.
Args:
qr: A `QueueRunner`.
collection: A `GraphKey` specifying the graph collection to add
the queue runner to. Defaults to `GraphKeys.QUEUE_RUNNERS`.
"""
ops.add_to_collection(collection, qr)
示例8: initialize
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def initialize(self, table):
"""Initializes the given `table` with `keys` and `values` tensors.
Args:
table: The table to initialize.
Returns:
The operation that initializes the table.
Raises:
TypeError: when the keys and values data types do not match the table
key and value data types.
"""
table.check_table_dtypes(self._keys.dtype, self._values.dtype)
with ops.name_scope(
self._name,
values=(table.table_ref, self._keys, self._values)) as scope:
# pylint: disable=protected-access
init_op = gen_lookup_ops._initialize_table(
table.table_ref, self._keys, self._values, name=scope)
# pylint: enable=protected-access
ops.add_to_collection(ops.GraphKeys.TABLE_INITIALIZERS, init_op)
return init_op
示例9: _init_local_init_op
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def _init_local_init_op(self, local_init_op=USE_DEFAULT):
"""Initializes local_init_op.
Args:
local_init_op: `Operation` run for every new supervisor instance. If set
to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP
collection. If the collection is empty, create an op that initializes
all local variables and all tables.
"""
if local_init_op is Supervisor.USE_DEFAULT:
local_init_op = self._get_first_op_from_collection(
ops.GraphKeys.LOCAL_INIT_OP)
if local_init_op is None:
op_list = [variables.local_variables_initializer(),
data_flow_ops.tables_initializer()]
if op_list:
local_init_op = control_flow_ops.group(*op_list)
ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op)
self._local_init_op = local_init_op
示例10: _get_concat_variable
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def _get_concat_variable(name, shape, dtype, num_shards):
"""Get a sharded variable concatenated into one tensor."""
sharded_variable = _get_sharded_variable(name, shape, dtype, num_shards)
if len(sharded_variable) == 1:
return sharded_variable[0]
concat_name = name + "/concat"
concat_full_name = vs.get_variable_scope().name + "/" + concat_name + ":0"
for value in ops.get_collection(ops.GraphKeys.CONCATENATED_VARIABLES):
if value.name == concat_full_name:
return value
concat_variable = array_ops.concat(sharded_variable, 0, name=concat_name)
ops.add_to_collection(ops.GraphKeys.CONCATENATED_VARIABLES,
concat_variable)
return concat_variable
示例11: setUp
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def setUp(self):
self.base_path = os.path.join(test.get_temp_dir(), "no_vars")
if not os.path.exists(self.base_path):
os.mkdir(self.base_path)
# Create a simple graph with a variable, then convert variables to
# constants and export the graph.
with ops.Graph().as_default() as g:
x = array_ops.placeholder(dtypes.float32, name="x")
w = variables.Variable(3.0)
y = math_ops.subtract(w * x, 7.0, name="y") # pylint: disable=unused-variable
ops.add_to_collection("meta", "this is meta")
with self.test_session(graph=g) as session:
variables.global_variables_initializer().run()
new_graph_def = graph_util.convert_variables_to_constants(
session, g.as_graph_def(), ["y"])
filename = os.path.join(self.base_path, constants.META_GRAPH_DEF_FILENAME)
saver.export_meta_graph(
filename, graph_def=new_graph_def, collection_list=["meta"])
示例12: initialize
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def initialize(self, table):
"""Initializes the given `table` with `keys` and `values` tensors.
Args:
table: The table to initialize.
Returns:
The operation that initializes the table.
Raises:
TypeError: when the keys and values data types do not match the table
key and value data types.
"""
table.check_table_dtypes(self._keys.dtype, self._values.dtype)
with ops.name_scope(self._name, values=[table]) as scope:
# pylint: disable=protected-access
init_op = gen_data_flow_ops._initialize_table(table.table_ref,
self._keys,
self._values,
name=scope)
# pylint: enable=protected-access
ops.add_to_collection(ops.GraphKeys.TABLE_INITIALIZERS, init_op)
return init_op
示例13: register_prior
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def register_prior(variational, prior):
"""Associate a variational `StochasticTensor` with a `Distribution` prior.
This is a helper function used in conjunction with `elbo` that allows users
to specify the mapping between variational distributions and their priors
without having to pass in `variational_with_prior` explicitly.
Args:
variational: `StochasticTensor` q(Z). Approximating distribution.
prior: `Distribution` p(Z). Prior distribution.
Returns:
None
Raises:
ValueError: if variational is not a `StochasticTensor` or `prior` is not
a `Distribution`.
"""
if not isinstance(variational, st.StochasticTensor):
raise TypeError("variational must be a StochasticTensor")
if not isinstance(prior, distribution.Distribution):
raise TypeError("prior must be a Distribution")
ops.add_to_collection(VI_PRIORS, (variational, prior))
示例14: _get_arg_stack
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def _get_arg_stack():
stack = ops.get_collection(_ARGSTACK_KEY)
if stack:
return stack[0]
else:
stack = [{}]
ops.add_to_collection(_ARGSTACK_KEY, stack)
return stack
示例15: _init_ready_op
# 需要導入模塊: from tensorflow.python.framework import ops [as 別名]
# 或者: from tensorflow.python.framework.ops import add_to_collection [as 別名]
def _init_ready_op(self,
ready_op=USE_DEFAULT,
ready_for_local_init_op=USE_DEFAULT):
"""Initializes ready_op.
Args:
ready_op: `Tensor` to check if the model is initialized.
If it's set to USE_DEFAULT, creates an op that checks all
the variables are initialized.
ready_for_local_init_op: `Tensor` to check if the model is ready to run
local_init_op.
If it's set to USE_DEFAULT, creates an op that checks all
the global variables are initialized.
"""
if ready_op is Supervisor.USE_DEFAULT:
ready_op = self._get_first_op_from_collection(ops.GraphKeys.READY_OP)
if ready_op is None:
ready_op = variables.report_uninitialized_variables()
ops.add_to_collection(ops.GraphKeys.READY_OP, ready_op)
self._ready_op = ready_op
# ready_for_local_init_op defaults to None for backward compatibility
if ready_for_local_init_op is Supervisor.USE_DEFAULT:
ready_for_local_init_op = self._get_first_op_from_collection(
ops.GraphKeys.READY_FOR_LOCAL_INIT_OP)
self._ready_for_local_init_op = ready_for_local_init_op